--------------------------------------------------------------------------- --- Algorithms used to place various drawables. -- -- The functions provided by this module all follow the same arguments -- conventions. This allow: -- -- * To use them in various other module as -- [visitor objects](https://en.wikipedia.org/wiki/Visitor_pattern) -- * Turn each function into an API with various common customization parameters. -- * Re-use the same functions for the `mouse`, `client`s, `screen`s and `wibox`es -- -- --

Compositing

-- -- It is possible to compose placement function using the `+` or `*` operator: -- --@DOC_awful_placement_compose_EXAMPLE@ -- --@DOC_awful_placement_compose2_EXAMPLE@ -- --

Common arguments

-- -- **pretend** (*boolean*): -- -- Do not apply the new geometry. This is useful if only the return values is -- necessary. -- -- **honor_workarea** (*boolean*): -- -- Take workarea into account when placing the drawable (default: false) -- -- **honor_padding** (*boolean*): -- -- Take the screen padding into account (see `screen.padding`) -- -- **tag** (*tag*): -- -- Use a tag geometry -- -- **margins** (*number* or *table*): -- -- A table with left, right, top, bottom keys or a number -- -- **parent** (client, wibox, mouse or screen): -- -- A parent drawable to use a base geometry -- -- **bounding_rect** (table): -- -- A bounding rectangle -- -- **attach** (*boolean*): -- -- **offset** (*table or number*): -- -- The offset(s) to apply to the new geometry. -- -- **store_geometry** (*boolean*): -- -- Keep a single history of each type of placement. It can be restored using -- `awful.placement.restore` by setting the right `context` argument. -- -- When either the parent or the screen geometry change, call the placement -- function again. -- -- **update_workarea** (*boolean*): -- -- If *attach* is true, also update the screen workarea. -- -- @author Emmanuel Lepage Vallee <elv1313@gmail.com> -- @author Julien Danjou <julien@danjou.info> -- @copyright 2008 Julien Danjou, Emmanuel Lepage Vallee 2016 -- @release @AWESOME_VERSION@ -- @module awful.placement --------------------------------------------------------------------------- -- Grab environment we need local ipairs = ipairs local pairs = pairs local math = math local table = table local capi = { screen = screen, mouse = mouse, client = client } local client = require("awful.client") local layout = require("awful.layout") local a_screen = require("awful.screen") local util = require("awful.util") local dpi = require("beautiful").xresources.apply_dpi local function get_screen(s) return s and capi.screen[s] end local wrap_client = nil --- Allow multiple placement functions to be daisy chained. -- This also allow the functions to be aware they are being chained and act -- upon the previous nodes results to avoid unnecessary processing or deduce -- extra paramaters/arguments. local function compose(...) local queue = {} local nodes = {...} -- Allow placement.foo + (var == 42 and placement.bar) if not nodes[2] then return nodes[1] end -- nodes[1] == self, nodes[2] == other for _, w in ipairs(nodes) do -- Build an execution queue if w.context and w.context == "compose" then for _, elem in ipairs(w.queue or {}) do table.insert(queue, elem) end else table.insert(queue, w) end end local ret = wrap_client(function(d, args, ...) local rets = {} local last_geo = nil -- As some functions may have to take into account results from -- previously execued ones, add the `composition_results` hint. args = setmetatable({composition_results=rets}, {__index=args}) -- Only apply the geometry once, not once per chain node, to do this, -- Force the "pretend" argument and restore the original value for -- the last node. local pretend_real = args.pretend args.pretend = true for k, f in ipairs(queue) do if k == #queue then args.pretend = pretend_real or false end local r = {f(d, args, ...)} last_geo = r[1] or last_geo args.override_geometry = last_geo -- Keep the return value, store one per context if f.context then -- When 2 composition queue are executed, merge the return values if f.context == "compose" then for k2,v in pairs(r) do rets[k2] = v end else rets[f.context] = r end end end return last_geo, rets end, "compose") ret.queue = queue return ret end wrap_client = function(f, context) return setmetatable( { is_placement= true, context = context, }, { __call = function(_,...) return f(...) end, __add = compose, -- Composition is usually defined as + __mul = compose -- Make sense if you think of the functions as matrices } ) end local placement_private = {} -- The module is a proxy in front of the "real" functions. -- This allow syntax like: -- -- (awful.placement.no_overlap + awful.placement.no_offscreen)(c) -- local placement = setmetatable({}, { __index = placement_private, __newindex = function(_, k, f) placement_private[k] = wrap_client(f, k) end }) -- 3x3 matrix of the valid sides and corners local corners3x3 = {{"top_left" , "top" , "top_right" }, {"left" , nil , "right" }, {"bottom_left", "bottom" , "bottom_right"}} -- 2x2 matrix of the valid sides and corners local corners2x2 = {{"top_left" , "top_right" }, {"bottom_left", "bottom_right"}} -- Compute the new `x` and `y`. -- The workarea position need to be applied by the caller local align_map = { top_left = function(_ , _ , _ , _ ) return {x=0 , y=0 } end, top_right = function(sw, _ , dw, _ ) return {x=sw-dw , y=0 } end, bottom_left = function(_ , sh, _ , dh) return {x=0 , y=sh-dh } end, bottom_right = function(sw, sh, dw, dh) return {x=sw-dw , y=sh-dh } end, left = function(_ , sh, _ , dh) return {x=0 , y=sh/2-dh/2} end, right = function(sw, sh, dw, dh) return {x=sw-dw , y=sh/2-dh/2} end, top = function(sw, _ , dw, _ ) return {x=sw/2-dw/2, y=0 } end, bottom = function(sw, sh, dw, dh) return {x=sw/2-dw/2, y=sh-dh } end, centered = function(sw, sh, dw, dh) return {x=sw/2-dw/2, y=sh/2-dh/2} end, center_vertical = function(_ , sh, _ , dh) return {x= nil , y=sh-dh } end, center_horizontal = function(sw, _ , dw, _ ) return {x=sw/2-dw/2, y= nil } end, } -- Store function -> keys local reverse_align_map = {} -- Some parameters to correctly compute the final size local resize_to_point_map = { -- Corners top_left = {p1= nil , p2={1,1}, x_only=false, y_only=false, align="bottom_right"}, top_right = {p1={0,1} , p2= nil , x_only=false, y_only=false, align="bottom_left" }, bottom_left = {p1= nil , p2={1,0}, x_only=false, y_only=false, align="top_right" }, bottom_right = {p1={0,0} , p2= nil , x_only=false, y_only=false, align="top_left" }, -- Sides left = {p1= nil , p2={1,1}, x_only=true , y_only=false, align="top_right" }, right = {p1={0,0} , p2= nil , x_only=true , y_only=false, align="top_left" }, top = {p1= nil , p2={1,1}, x_only=false, y_only=true , align="bottom_left" }, bottom = {p1={0,0} , p2= nil , x_only=false, y_only=true , align="top_left" }, } --- Add a context to the arguments. -- This function extend the argument table. The context is used by some -- internal helper methods. If there already is a context, it has priority and -- is kept. local function add_context(args, context) return setmetatable({context = (args or {}).context or context }, {__index=args}) end local data = setmetatable({}, { __mode = 'k' }) --- Store a drawable geometry (per context) in a weak table. -- @param d The drawin -- @tparam string reqtype The context. local function store_geometry(d, reqtype) if not data[d] then data[d] = {} end if not data[d][reqtype] then data[d][reqtype] = {} end data[d][reqtype] = d:geometry() data[d][reqtype].screen = d.screen end --- Apply some modifications before applying the new geometry. -- @tparam table new_geo The new geometry -- @tparam table args The common arguments -- @treturn table|nil The new geometry local function fix_new_geometry(new_geo, args) if args.pretend or not new_geo then return nil end local offset = args.offset or {} if type(offset) == "number" then offset = { x = offset, y = offset, width = offset, height = offset, } end return { x = new_geo.x and (new_geo.x + (offset.x or 0)), y = new_geo.y and (new_geo.y + (offset.y or 0)), width = new_geo.width and (new_geo.width + (offset.width or 0)), height = new_geo.height and (new_geo.height + (offset.height or 0)), } end --- Get the area covered by a drawin. -- @param d The drawin -- @tparam[opt=nil] table new_geo A new geometry -- @tparam[opt=false] boolean ignore_border_width Ignore the border -- @tparam table args the method arguments -- @treturn The drawin's area. local function area_common(d, new_geo, ignore_border_width, args) -- The C side expect no arguments, nil isn't valid local geometry = new_geo and d:geometry(new_geo) or d:geometry() local border = ignore_border_width and 0 or d.border_width or 0 -- When using the placement composition along with the "pretend" -- option, it is necessary to keep a "virtual" geometry. if args and args.override_geometry then geometry = util.table.clone(args.override_geometry) end geometry.width = geometry.width + 2 * border geometry.height = geometry.height + 2 * border return geometry end --- Get (and optionally set) an object geometry. -- Some elements, such as `mouse` and `screen` don't have a `:geometry()` -- methods. -- @param obj An object -- @tparam table args the method arguments -- @tparam[opt=nil] table new_geo A new geometry to replace the existing one -- @tparam[opt=false] boolean ignore_border_width Ignore the border -- @treturn table A table with *x*, *y*, *width* and *height*. local function geometry_common(obj, args, new_geo, ignore_border_width) -- Store the current geometry in a singleton-memento if args.store_geometry and new_geo and args.context then store_geometry(obj, args.context) end -- It's a mouse if obj.coords then local coords = fix_new_geometry(new_geo, args) and obj.coords(new_geo) or obj.coords() return {x=coords.x, y=coords.y, width=0, height=0} elseif obj.geometry then local geo = obj.geometry -- It is either a drawable or something that implement its API if type(geo) == "function" then local dgeo = area_common( obj, fix_new_geometry(new_geo, args), ignore_border_width, args ) -- Apply the margins if args.margins then local delta = type(args.margins) == "table" and args.margins or { left = args.margins , right = args.margins, top = args.margins , bottom = args.margins } return { x = dgeo.x + (delta.left or 0), y = dgeo.y + (delta.top or 0), width = dgeo.width - (delta.left or 0) - (delta.right or 0), height = dgeo.height - (delta.top or 0) - (delta.bottom or 0), } end return dgeo end -- It is a screen, it doesn't support setting new sizes. return obj:get_bounding_geometry(args) else assert(false, "Invalid object") end end --- Get the parent geometry from the standardized arguments API shared by all -- `awful.placement` methods. -- @param obj A screen or a drawable -- @tparam table args the method arguments -- @treturn table A table with *x*, *y*, *width* and *height*. local function get_parent_geometry(obj, args) if args.bounding_rect then return args.bounding_rect elseif args.parent then return geometry_common(args.parent, args) elseif obj.screen then return geometry_common(obj.screen, args) else return geometry_common(capi.screen[capi.mouse.screen], args) end end --- Move a point into an area. -- This doesn't change the *width* and *height* values, allowing the target -- area to be smaller than the source one. -- @tparam table source The (larger) geometry to move `target` into -- @tparam table target The area to move into `source` -- @treturn table A table with *x* and *y* keys local function move_into_geometry(source, target) local ret = {x = target.x, y = target.y} -- Horizontally if ret.x < source.x then ret.x = source.x elseif ret.x > source.x + source.width then ret.x = source.x + source.width - 1 end -- Vertically if ret.y < source.y then ret.y = source.y elseif ret.y > source.y + source.height then ret.y = source.y + source.height - 1 end return ret end -- Update the workarea local function wibox_update_strut(d, position) -- If the drawable isn't visible, remove the struts if not d.visible then d:struts { left = 0, right = 0, bottom = 0, top = 0 } return end -- Detect horizontal or vertical drawables local geo = area_common(d) local vertical = geo.width < geo.height -- Look into the `position` string to find the relevants sides to crop from -- the workarea local struts = { left = 0, right = 0, bottom = 0, top = 0 } if vertical then for _, v in ipairs {"right", "left"} do if (not position) or position:match(v) then struts[v] = geo.width end end else for _, v in ipairs {"top", "bottom"} do if (not position) or position:match(v) then struts[v] = geo.height end end end -- Update the workarea d:struts(struts) end --- Pin a drawable to a placement function. -- Automatically update the position when the size change. -- All other arguments will be passed to the `position` function (if any) -- @tparam[opt=client.focus] drawable d A drawable (like `client`, `mouse` -- or `wibox`) -- @param position_f A position name (see `align`) or a position function -- @tparam[opt={}] table args Other arguments local function attach(d, position_f, args) args = args or {} if not args.attach then return end -- Avoid a connection loop args = setmetatable({attach=false}, {__index=args}) d = d or capi.client.focus if not d then return end if type(position_f) == "string" then position_f = placement[position_f] end if not position_f then return end local function tracker() position_f(d, args) end d:connect_signal("property::width" , tracker) d:connect_signal("property::height", tracker) tracker() if args.update_workarea then local function tracker_struts() --TODO this is too fragile and doesn't work with all methods. wibox_update_strut(d, reverse_align_map[position_f]) end d:connect_signal("property::geometry" , tracker_struts) d:connect_signal("property::visible" , tracker_struts) tracker_struts() end -- If there is a parent drawable, screen or mouse, also track it local parent = args.parent or d.screen if parent then args.parent:connect_signal("property::geometry" , tracker) end end --- Check if an area intersect another area. -- @param a The area. -- @param b The other area. -- @return True if they intersect, false otherwise. local function area_intersect_area(a, b) return (b.x < a.x + a.width and b.x + b.width > a.x and b.y < a.y + a.height and b.y + b.height > a.y) end --- Get the intersect area between a and b. -- @param a The area. -- @param b The other area. -- @return The intersect area. local function area_intersect_area_get(a, b) local g = {} g.x = math.max(a.x, b.x) g.y = math.max(a.y, b.y) g.width = math.min(a.x + a.width, b.x + b.width) - g.x g.height = math.min(a.y + a.height, b.y + b.height) - g.y return g end --- Remove an area from a list, splitting the space between several area that -- can overlap. -- @param areas Table of areas. -- @param elem Area to remove. -- @return The new area list. local function area_remove(areas, elem) for i = #areas, 1, -1 do -- Check if the 'elem' intersect if area_intersect_area(areas[i], elem) then -- It does? remove it local r = table.remove(areas, i) local inter = area_intersect_area_get(r, elem) if inter.x > r.x then table.insert(areas, { x = r.x, y = r.y, width = inter.x - r.x, height = r.height }) end if inter.y > r.y then table.insert(areas, { x = r.x, y = r.y, width = r.width, height = inter.y - r.y }) end if inter.x + inter.width < r.x + r.width then table.insert(areas, { x = inter.x + inter.width, y = r.y, width = (r.x + r.width) - (inter.x + inter.width), height = r.height }) end if inter.y + inter.height < r.y + r.height then table.insert(areas, { x = r.x, y = inter.y + inter.height, width = r.width, height = (r.y + r.height) - (inter.y + inter.height) }) end end end return areas end -- Convert 2 points into a rectangle local function rect_from_points(p1x, p1y, p2x, p2y) return { x = p1x, y = p1y, width = p2x - p1x, height = p2y - p1y, } end -- Convert a rectangle and matrix info into a point local function rect_to_point(rect, corner_i, corner_j) return { x = rect.x + corner_i * math.floor(rect.width ), y = rect.y + corner_j * math.floor(rect.height), } end --- Move a drawable to the closest corner of the parent geometry (such as the -- screen). -- -- Valid arguments include the common ones and: -- -- * **include_sides**: Also include the left, right, top and bottom positions -- --@DOC_awful_placement_closest_mouse_EXAMPLE@ -- @tparam[opt=client.focus] drawable d A drawable (like `client`, `mouse` -- or `wibox`) -- @tparam[opt={}] table args The arguments -- @treturn table The new geometry -- @treturn string The corner name function placement.closest_corner(d, args) args = add_context(args, "closest_corner") d = d or capi.client.focus local sgeo = get_parent_geometry(d, args) local dgeo = geometry_common(d, args) local pos = move_into_geometry(sgeo, dgeo) local corner_i, corner_j, n -- Use the product of 3 to get the closest point in a NxN matrix local function f(_n, mat) n = _n -- The +1 is required to avoid a rounding error when -- pos.x == sgeo.x+sgeo.width corner_i = -math.ceil( ( (sgeo.x - pos.x) * n) / (sgeo.width + 1)) corner_j = -math.ceil( ( (sgeo.y - pos.y) * n) / (sgeo.height + 1)) return mat[corner_j + 1][corner_i + 1] end -- Turn the area into a grid and snap to the cloest point. This size of the -- grid will increase the accuracy. A 2x2 matrix only include the corners, -- at 3x3, this include the sides too technically, a random size would work, -- but without corner names. local grid_size = args.include_sides and 3 or 2 -- If the point is in the center, use the closest corner local corner = grid_size == 3 and f(3, corners3x3) or f(2, corners2x2) -- Transpose the corner back to the original size local new_args = setmetatable({position = corner}, {__index=args}) local ngeo = placement_private.align(d, new_args) return ngeo, corner end --- Place the client so no part of it will be outside the screen (workarea). --@DOC_awful_placement_no_offscreen_EXAMPLE@ -- @client c The client. -- @tparam[opt=client's screen] integer screen The screen. -- @treturn table The new client geometry. function placement.no_offscreen(c, screen) --HACK necessary for composition to work. The API will be changed soon if type(screen) == "table" then screen = nil end c = c or capi.client.focus local geometry = area_common(c) screen = get_screen(screen or c.screen or a_screen.getbycoord(geometry.x, geometry.y)) local screen_geometry = screen.workarea if geometry.x + geometry.width > screen_geometry.x + screen_geometry.width then geometry.x = screen_geometry.x + screen_geometry.width - geometry.width end if geometry.x < screen_geometry.x then geometry.x = screen_geometry.x end if geometry.y + geometry.height > screen_geometry.y + screen_geometry.height then geometry.y = screen_geometry.y + screen_geometry.height - geometry.height end if geometry.y < screen_geometry.y then geometry.y = screen_geometry.y end return c:geometry { x = geometry.x, y = geometry.y } end --- Place the client where there's place available with minimum overlap. --@DOC_awful_placement_no_overlap_EXAMPLE@ -- @param c The client. -- @treturn table The new geometry function placement.no_overlap(c) c = c or capi.client.focus local geometry = area_common(c) local screen = get_screen(c.screen or a_screen.getbycoord(geometry.x, geometry.y)) local cls = client.visible(screen) local curlay = layout.get() local areas = { screen.workarea } for _, cl in pairs(cls) do if cl ~= c and cl.type ~= "desktop" and (cl.floating or curlay == layout.suit.floating) then areas = area_remove(areas, area_common(cl)) end end -- Look for available space local found = false local new = { x = geometry.x, y = geometry.y, width = 0, height = 0 } for _, r in ipairs(areas) do if r.width >= geometry.width and r.height >= geometry.height and r.width * r.height > new.width * new.height then found = true new = r -- Check if the client's current position is available -- and prefer that one (why move it around pointlessly?) if geometry.x >= r.x and geometry.y >= r.y and geometry.x + geometry.width <= r.x + r.width and geometry.y + geometry.height <= r.y + r.height then new.x = geometry.x new.y = geometry.y end end end -- We did not find an area with enough space for our size: -- just take the biggest available one and go in. -- This makes sure to have the whole screen's area in case it has been -- removed. if not found then if #areas == 0 then areas = { screen.workarea } end for _, r in ipairs(areas) do if r.width * r.height > new.width * new.height then new = r end end end -- Restore height and width new.width = geometry.width new.height = geometry.height return c:geometry({ x = new.x, y = new.y }) end --- Place the client under the mouse. --@DOC_awful_placement_under_mouse_EXAMPLE@ -- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`) -- @tparam[opt={}] table args Other arguments -- @treturn table The new geometry function placement.under_mouse(d, args) args = add_context(args, "under_mouse") d = d or capi.client.focus local m_coords = capi.mouse.coords() local ngeo = geometry_common(d, args) ngeo.x = m_coords.x - ngeo.width / 2 ngeo.y = m_coords.y - ngeo.height / 2 local bw = d.border_width or 0 ngeo.width = ngeo.width - 2*bw ngeo.height = ngeo.height - 2*bw return ngeo end --- Place the client next to the mouse. -- -- It will place `c` next to the mouse pointer, trying the following positions -- in this order: right, left, above and below. --@DOC_awful_placement_next_to_mouse_EXAMPLE@ -- @client[opt=focused] c The client. -- @tparam[opt=apply_dpi(5)] integer offset The offset from the mouse position. -- @treturn table The new geometry function placement.next_to_mouse(c, offset) c = c or capi.client.focus offset = offset or dpi(5) local c_geometry = area_common(c) local c_width = c_geometry.width local c_height = c_geometry.height local m_coords = capi.mouse.coords() local screen_geometry = capi.screen[capi.mouse.screen].workarea local x, y -- Prefer it to be on the right. x = m_coords.x + offset if x + c_width > screen_geometry.width then -- Then to the left. x = m_coords.x - c_width - offset end if x < screen_geometry.x then -- Then above. x = m_coords.x - math.ceil(c_width / 2) y = m_coords.y - c_height - offset if y < screen_geometry.y then -- Finally below. y = m_coords.y + offset end else y = m_coords.y - math.ceil(c_height / 2) end return c:geometry({ x = x, y = y }) end --- Resize the drawable to the cursor. -- -- Valid args: -- -- * *axis*: The axis (vertical or horizontal). If none is -- specified, then the drawable will be resized on both axis. -- --@DOC_awful_placement_resize_to_mouse_EXAMPLE@ -- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`) -- @tparam[opt={}] table args Other arguments -- @treturn table The new geometry function placement.resize_to_mouse(d, args) d = d or capi.client.focus args = add_context(args, "resize_to_mouse") local coords = capi.mouse.coords() local ngeo = geometry_common(d, args) local h_only = args.axis == "horizontal" local v_only = args.axis == "vertical" -- To support both growing and shrinking the drawable, it is necessary -- to decide to use either "north or south" and "east or west" directions. -- Otherwise, the result will always be 1x1 local _, closest_corner = placement.closest_corner(capi.mouse, { parent = d, pretend = true, include_sides = args.include_sides or false, }) -- Given "include_sides" wasn't set, it will always return a name -- with the 2 axis. If only one axis is needed, adjust the result if h_only then closest_corner = closest_corner:match("left") or closest_corner:match("right") elseif v_only then closest_corner = closest_corner:match("top") or closest_corner:match("bottom") end -- Use p0 (mouse), p1 and p2 to create a rectangle local pts = resize_to_point_map[closest_corner] local p1 = pts.p1 and rect_to_point(ngeo, pts.p1[1], pts.p1[2]) or coords local p2 = pts.p2 and rect_to_point(ngeo, pts.p2[1], pts.p2[2]) or coords -- Create top_left and bottom_right points, convert to rectangle ngeo = rect_from_points( pts.y_only and ngeo.x or math.min(p1.x, p2.x), pts.x_only and ngeo.y or math.min(p1.y, p2.y), pts.y_only and ngeo.x + ngeo.width or math.max(p2.x, p1.x), pts.x_only and ngeo.y + ngeo.height or math.max(p2.y, p1.y) ) local bw = d.border_width or 0 for _, a in ipairs {"width", "height"} do ngeo[a] = ngeo[a] - 2*bw end -- Now, correct the geometry by the given size_hints offset if d.apply_size_hints then local w, h = d:apply_size_hints( ngeo.width, ngeo.height ) local offset = align_map[pts.align](w, h, ngeo.width, ngeo.height) ngeo.x = ngeo.x - offset.x ngeo.y = ngeo.y - offset.y end geometry_common(d, args, ngeo) return ngeo end --- Move the drawable (client or wibox) `d` to a screen position or side. -- -- Supported args.positions are: -- -- * top_left -- * top_right -- * bottom_left -- * bottom_right -- * left -- * right -- * top -- * bottom -- * centered -- * center_vertical -- * center_horizontal -- --@DOC_awful_placement_align_EXAMPLE@ -- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`) -- @tparam[opt={}] table args Other arguments -- @treturn table The new geometry function placement.align(d, args) args = add_context(args, "align") d = d or capi.client.focus if not d or not args.position then return end local sgeo = get_parent_geometry(d, args) local dgeo = geometry_common(d, args) local bw = d.border_width or 0 local pos = align_map[args.position]( sgeo.width , sgeo.height, dgeo.width , dgeo.height ) local ngeo = { x = (pos.x and math.ceil(sgeo.x + pos.x) or dgeo.x) , y = (pos.y and math.ceil(sgeo.y + pos.y) or dgeo.y) , width = math.ceil(dgeo.width ) - 2*bw, height = math.ceil(dgeo.height ) - 2*bw, } geometry_common(d, args, ngeo) attach(d, placement[args.position], args) return ngeo end -- Add the alias functions for k in pairs(align_map) do placement[k] = function(d, args) args = add_context(args, k) args.position = k return placement_private.align(d, args) end reverse_align_map[placement[k]] = k end -- Add the documentation for align alias ---@DOC_awful_placement_top_left_EXAMPLE@ ---@DOC_awful_placement_top_right_EXAMPLE@ ---@DOC_awful_placement_bottom_left_EXAMPLE@ ---@DOC_awful_placement_bottom_right_EXAMPLE@ ---@DOC_awful_placement_left_EXAMPLE@ ---@DOC_awful_placement_right_EXAMPLE@ ---@DOC_awful_placement_top_EXAMPLE@ ---@DOC_awful_placement_bottom_EXAMPLE@ ---@DOC_awful_placement_centered_EXAMPLE@ ---@DOC_awful_placement_center_vertical_EXAMPLE@ ---@DOC_awful_placement_center_horizontal_EXAMPLE@ --- Stretch a drawable in a specific direction. -- Valid args: -- -- * **direction**: The stretch direction (*left*, *right*, *up*, *down*) or -- a table with multiple directions. -- --@DOC_awful_placement_stretch_EXAMPLE@ -- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`) -- @tparam[opt={}] table args The arguments -- @treturn table The new geometry function placement.stretch(d, args) args = add_context(args, "stretch") d = d or capi.client.focus if not d or not args.direction then return end -- In case there is multiple directions, call `stretch` for each of them if type(args.direction) == "table" then for _, dir in ipairs(args.direction) do args.direction = dir placement_private.stretch(dir, args) end return end local sgeo = get_parent_geometry(d, args) local dgeo = geometry_common(d, args) local ngeo = geometry_common(d, args, nil, true) local bw = d.border_width or 0 if args.direction == "left" then ngeo.x = sgeo.x ngeo.width = dgeo.width + (dgeo.x - ngeo.x) elseif args.direction == "right" then ngeo.width = sgeo.width - ngeo.x - 2*bw elseif args.direction == "up" then ngeo.y = sgeo.y ngeo.height = dgeo.height + (dgeo.y - ngeo.y) elseif args.direction == "down" then ngeo.height = sgeo.height - dgeo.y - 2*bw else assert(false) end -- Avoid negative sizes if args.parent isn't compatible ngeo.width = math.max(args.minimim_width or 1, ngeo.width ) ngeo.height = math.max(args.minimim_height or 1, ngeo.height) geometry_common(d, args, ngeo) attach(d, placement["stretch_"..args.direction], args) return ngeo end -- Add the alias functions for _,v in ipairs {"left", "right", "up", "down"} do placement["stretch_"..v] = function(d, args) args = add_context(args, "stretch_"..v) args.direction = v return placement_private.stretch(d, args) end end ---@DOC_awful_placement_stretch_left_EXAMPLE@ ---@DOC_awful_placement_stretch_right_EXAMPLE@ ---@DOC_awful_placement_stretch_up_EXAMPLE@ ---@DOC_awful_placement_stretch_down_EXAMPLE@ --- Maximize a drawable horizontally, vertically or both. -- Valid args: -- -- * *axis*:The axis (vertical or horizontal). If none is -- specified, then the drawable will be maximized on both axis. -- --@DOC_awful_placement_maximize_EXAMPLE@ -- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`) -- @tparam[opt={}] table args The arguments -- @treturn table The new geometry function placement.maximize(d, args) args = add_context(args, "maximize") d = d or capi.client.focus if not d then return end local sgeo = get_parent_geometry(d, args) local ngeo = geometry_common(d, args, nil, true) local bw = d.border_width or 0 if (not args.axis) or args.axis :match "vertical" then ngeo.y = sgeo.y ngeo.height = sgeo.height - 2*bw end if (not args.axis) or args.axis :match "horizontal" then ngeo.x = sgeo.x ngeo.width = sgeo.width - 2*bw end geometry_common(d, args, ngeo) attach(d, placement.maximize, args) return ngeo end -- Add the alias functions for _, v in ipairs {"vertically", "horizontally"} do placement["maximize_"..v] = function(d2, args) args = add_context(args, "maximize_"..v) args.axis = v return placement_private.maximize(d2, args) end end --- Scale the drawable by either a relative or absolute percent. -- -- Valid args: -- -- **to_percent** : A number between 0 and 1. It represent a percent related to -- the parent geometry. -- **by_percent** : A number between 0 and 1. It represent a percent related to -- the current size. -- **direction**: Nothing or "left", "right", "up", "down". -- -- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`) -- @tparam[opt={}] table args The arguments -- @treturn table The new geometry function placement.scale(d, args) args = add_context(args, "scale_to_percent") d = d or capi.client.focus local to_percent = args.to_percent local by_percent = args.by_percent local percent = to_percent or by_percent local direction = args.direction local sgeo = get_parent_geometry(d, args) local ngeo = geometry_common(d, args, nil) local old_area = {width = ngeo.width, height = ngeo.height} if (not direction) or direction == "left" or direction == "right" then ngeo.width = (to_percent and sgeo or ngeo).width*percent if direction == "left" then ngeo.x = ngeo.x - (ngeo.width - old_area.width) end end if (not direction) or direction == "up" or direction == "down" then ngeo.height = (to_percent and sgeo or ngeo).height*percent if direction == "up" then ngeo.y = ngeo.y - (ngeo.height - old_area.height) end end local bw = d.border_width or 0 ngeo.width = ngeo.width - 2*bw ngeo.height = ngeo.height - 2*bw geometry_common(d, args, ngeo) attach(d, placement.maximize, args) return ngeo end ---@DOC_awful_placement_maximize_vertically_EXAMPLE@ ---@DOC_awful_placement_maximize_horizontally_EXAMPLE@ --- Restore the geometry. -- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`) -- @tparam[opt={}] table args The arguments -- @treturn boolean If the geometry was restored function placement.restore(d, args) if not args or not args.context then return false end d = d or capi.client.focus if not data[d] then return false end local memento = data[d][args.context] if not memento then return false end memento.screen = nil --TODO use it d:geometry(memento) return true end return placement -- vim: filetype=lua:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:textwidth=80