awesome/lib/awful/placement.lua

1150 lines
36 KiB
Lua

---------------------------------------------------------------------------
--- Algorithms used to place various drawables.
--
-- The functions provided by this module all follow the same arguments
-- conventions. This allow:
--
-- * To use them in various other module as
-- [visitor objects](https://en.wikipedia.org/wiki/Visitor_pattern)
-- * Turn each function into an API with various common customization parameters.
-- * Re-use the same functions for the `mouse`, `client`s, `screen`s and `wibox`es
--
--
-- <h3>Compositing</h3>
--
-- It is possible to compose placement function using the `+` or `*` operator:
--
--@DOC_awful_placement_compose_EXAMPLE@
--
--@DOC_awful_placement_compose2_EXAMPLE@
--
-- <h3>Common arguments</h3>
--
-- **pretend** (*boolean*):
--
-- Do not apply the new geometry. This is useful if only the return values is
-- necessary.
--
-- **honor_workarea** (*boolean*):
--
-- Take workarea into account when placing the drawable (default: false)
--
-- **honor_padding** (*boolean*):
--
-- Take the screen padding into account (see `screen.padding`)
--
-- **tag** (*tag*):
--
-- Use a tag geometry
--
-- **margins** (*number* or *table*):
--
-- A table with left, right, top, bottom keys or a number
--
-- **parent** (client, wibox, mouse or screen):
--
-- A parent drawable to use a base geometry
--
-- **bounding_rect** (table):
--
-- A bounding rectangle
--
-- **attach** (*boolean*):
--
-- **offset** (*table or number*):
--
-- The offset(s) to apply to the new geometry.
--
-- **store_geometry** (*boolean*):
--
-- Keep a single history of each type of placement. It can be restored using
-- `awful.placement.restore` by setting the right `context` argument.
--
-- When either the parent or the screen geometry change, call the placement
-- function again.
--
-- **update_workarea** (*boolean*):
--
-- If *attach* is true, also update the screen workarea.
--
-- @author Emmanuel Lepage Vallee &lt;elv1313@gmail.com&gt;
-- @author Julien Danjou &lt;julien@danjou.info&gt;
-- @copyright 2008 Julien Danjou, Emmanuel Lepage Vallee 2016
-- @release @AWESOME_VERSION@
-- @module awful.placement
---------------------------------------------------------------------------
-- Grab environment we need
local ipairs = ipairs
local pairs = pairs
local math = math
local table = table
local capi =
{
screen = screen,
mouse = mouse,
client = client
}
local client = require("awful.client")
local layout = require("awful.layout")
local a_screen = require("awful.screen")
local util = require("awful.util")
local dpi = require("beautiful").xresources.apply_dpi
local function get_screen(s)
return s and capi.screen[s]
end
local wrap_client = nil
--- Allow multiple placement functions to be daisy chained.
-- This also allow the functions to be aware they are being chained and act
-- upon the previous nodes results to avoid unnecessary processing or deduce
-- extra paramaters/arguments.
local function compose(...)
local queue = {}
local nodes = {...}
-- Allow placement.foo + (var == 42 and placement.bar)
if not nodes[2] then
return nodes[1]
end
-- nodes[1] == self, nodes[2] == other
for _, w in ipairs(nodes) do
-- Build an execution queue
if w.context and w.context == "compose" then
for _, elem in ipairs(w.queue or {}) do
table.insert(queue, elem)
end
else
table.insert(queue, w)
end
end
local ret = wrap_client(function(d, args, ...)
local rets = {}
local last_geo = nil
-- As some functions may have to take into account results from
-- previously execued ones, add the `composition_results` hint.
args = setmetatable({composition_results=rets}, {__index=args})
-- Only apply the geometry once, not once per chain node, to do this,
-- Force the "pretend" argument and restore the original value for
-- the last node.
local pretend_real = args.pretend
args.pretend = true
for k, f in ipairs(queue) do
if k == #queue then
args.pretend = pretend_real or false
end
local r = {f(d, args, ...)}
last_geo = r[1] or last_geo
args.override_geometry = last_geo
-- Keep the return value, store one per context
if f.context then
-- When 2 composition queue are executed, merge the return values
if f.context == "compose" then
for k2,v in pairs(r) do
rets[k2] = v
end
else
rets[f.context] = r
end
end
end
return last_geo, rets
end, "compose")
ret.queue = queue
return ret
end
wrap_client = function(f, context)
return setmetatable(
{
is_placement= true,
context = context,
},
{
__call = function(_,...) return f(...) end,
__add = compose, -- Composition is usually defined as +
__mul = compose -- Make sense if you think of the functions as matrices
}
)
end
local placement_private = {}
-- The module is a proxy in front of the "real" functions.
-- This allow syntax like:
--
-- (awful.placement.no_overlap + awful.placement.no_offscreen)(c)
--
local placement = setmetatable({}, {
__index = placement_private,
__newindex = function(_, k, f)
placement_private[k] = wrap_client(f, k)
end
})
-- 3x3 matrix of the valid sides and corners
local corners3x3 = {{"top_left" , "top" , "top_right" },
{"left" , nil , "right" },
{"bottom_left", "bottom" , "bottom_right"}}
-- 2x2 matrix of the valid sides and corners
local corners2x2 = {{"top_left" , "top_right" },
{"bottom_left", "bottom_right"}}
-- Compute the new `x` and `y`.
-- The workarea position need to be applied by the caller
local align_map = {
top_left = function(_ , _ , _ , _ ) return {x=0 , y=0 } end,
top_right = function(sw, _ , dw, _ ) return {x=sw-dw , y=0 } end,
bottom_left = function(_ , sh, _ , dh) return {x=0 , y=sh-dh } end,
bottom_right = function(sw, sh, dw, dh) return {x=sw-dw , y=sh-dh } end,
left = function(_ , sh, _ , dh) return {x=0 , y=sh/2-dh/2} end,
right = function(sw, sh, dw, dh) return {x=sw-dw , y=sh/2-dh/2} end,
top = function(sw, _ , dw, _ ) return {x=sw/2-dw/2, y=0 } end,
bottom = function(sw, sh, dw, dh) return {x=sw/2-dw/2, y=sh-dh } end,
centered = function(sw, sh, dw, dh) return {x=sw/2-dw/2, y=sh/2-dh/2} end,
center_vertical = function(_ , sh, _ , dh) return {x= nil , y=sh-dh } end,
center_horizontal = function(sw, _ , dw, _ ) return {x=sw/2-dw/2, y= nil } end,
}
-- Store function -> keys
local reverse_align_map = {}
-- Some parameters to correctly compute the final size
local resize_to_point_map = {
-- Corners
top_left = {p1= nil , p2={1,1}, x_only=false, y_only=false, align="bottom_right"},
top_right = {p1={0,1} , p2= nil , x_only=false, y_only=false, align="bottom_left" },
bottom_left = {p1= nil , p2={1,0}, x_only=false, y_only=false, align="top_right" },
bottom_right = {p1={0,0} , p2= nil , x_only=false, y_only=false, align="top_left" },
-- Sides
left = {p1= nil , p2={1,1}, x_only=true , y_only=false, align="top_right" },
right = {p1={0,0} , p2= nil , x_only=true , y_only=false, align="top_left" },
top = {p1= nil , p2={1,1}, x_only=false, y_only=true , align="bottom_left" },
bottom = {p1={0,0} , p2= nil , x_only=false, y_only=true , align="top_left" },
}
--- Add a context to the arguments.
-- This function extend the argument table. The context is used by some
-- internal helper methods. If there already is a context, it has priority and
-- is kept.
local function add_context(args, context)
return setmetatable({context = (args or {}).context or context }, {__index=args})
end
local data = setmetatable({}, { __mode = 'k' })
--- Store a drawable geometry (per context) in a weak table.
-- @param d The drawin
-- @tparam string reqtype The context.
local function store_geometry(d, reqtype)
if not data[d] then data[d] = {} end
if not data[d][reqtype] then data[d][reqtype] = {} end
data[d][reqtype] = d:geometry()
data[d][reqtype].screen = d.screen
end
--- Apply some modifications before applying the new geometry.
-- @tparam table new_geo The new geometry
-- @tparam table args The common arguments
-- @treturn table|nil The new geometry
local function fix_new_geometry(new_geo, args)
if args.pretend or not new_geo then return nil end
local offset = args.offset or {}
if type(offset) == "number" then
offset = {
x = offset,
y = offset,
width = offset,
height = offset,
}
end
return {
x = new_geo.x and (new_geo.x + (offset.x or 0)),
y = new_geo.y and (new_geo.y + (offset.y or 0)),
width = new_geo.width and (new_geo.width + (offset.width or 0)),
height = new_geo.height and (new_geo.height + (offset.height or 0)),
}
end
--- Get the area covered by a drawin.
-- @param d The drawin
-- @tparam[opt=nil] table new_geo A new geometry
-- @tparam[opt=false] boolean ignore_border_width Ignore the border
-- @tparam table args the method arguments
-- @treturn The drawin's area.
local function area_common(d, new_geo, ignore_border_width, args)
-- The C side expect no arguments, nil isn't valid
local geometry = new_geo and d:geometry(new_geo) or d:geometry()
local border = ignore_border_width and 0 or d.border_width or 0
-- When using the placement composition along with the "pretend"
-- option, it is necessary to keep a "virtual" geometry.
if args and args.override_geometry then
geometry = util.table.clone(args.override_geometry)
end
geometry.width = geometry.width + 2 * border
geometry.height = geometry.height + 2 * border
return geometry
end
--- Get (and optionally set) an object geometry.
-- Some elements, such as `mouse` and `screen` don't have a `:geometry()`
-- methods.
-- @param obj An object
-- @tparam table args the method arguments
-- @tparam[opt=nil] table new_geo A new geometry to replace the existing one
-- @tparam[opt=false] boolean ignore_border_width Ignore the border
-- @treturn table A table with *x*, *y*, *width* and *height*.
local function geometry_common(obj, args, new_geo, ignore_border_width)
-- Store the current geometry in a singleton-memento
if args.store_geometry and new_geo and args.context then
store_geometry(obj, args.context)
end
-- It's a mouse
if obj.coords then
local coords = fix_new_geometry(new_geo, args)
and obj.coords(new_geo) or obj.coords()
return {x=coords.x, y=coords.y, width=0, height=0}
elseif obj.geometry then
local geo = obj.geometry
-- It is either a drawable or something that implement its API
if type(geo) == "function" then
local dgeo = area_common(
obj, fix_new_geometry(new_geo, args), ignore_border_width, args
)
-- Apply the margins
if args.margins then
local delta = type(args.margins) == "table" and args.margins or {
left = args.margins , right = args.margins,
top = args.margins , bottom = args.margins
}
return {
x = dgeo.x + (delta.left or 0),
y = dgeo.y + (delta.top or 0),
width = dgeo.width - (delta.left or 0) - (delta.right or 0),
height = dgeo.height - (delta.top or 0) - (delta.bottom or 0),
}
end
return dgeo
end
-- It is a screen, it doesn't support setting new sizes.
return obj:get_bounding_geometry(args)
else
assert(false, "Invalid object")
end
end
--- Get the parent geometry from the standardized arguments API shared by all
-- `awful.placement` methods.
-- @param obj A screen or a drawable
-- @tparam table args the method arguments
-- @treturn table A table with *x*, *y*, *width* and *height*.
local function get_parent_geometry(obj, args)
if args.bounding_rect then
return args.bounding_rect
elseif args.parent then
return geometry_common(args.parent, args)
elseif obj.screen then
return geometry_common(obj.screen, args)
else
return geometry_common(capi.screen[capi.mouse.screen], args)
end
end
--- Move a point into an area.
-- This doesn't change the *width* and *height* values, allowing the target
-- area to be smaller than the source one.
-- @tparam table source The (larger) geometry to move `target` into
-- @tparam table target The area to move into `source`
-- @treturn table A table with *x* and *y* keys
local function move_into_geometry(source, target)
local ret = {x = target.x, y = target.y}
-- Horizontally
if ret.x < source.x then
ret.x = source.x
elseif ret.x > source.x + source.width then
ret.x = source.x + source.width - 1
end
-- Vertically
if ret.y < source.y then
ret.y = source.y
elseif ret.y > source.y + source.height then
ret.y = source.y + source.height - 1
end
return ret
end
-- Update the workarea
local function wibox_update_strut(d, position)
-- If the drawable isn't visible, remove the struts
if not d.visible then
d:struts { left = 0, right = 0, bottom = 0, top = 0 }
return
end
-- Detect horizontal or vertical drawables
local geo = area_common(d)
local vertical = geo.width < geo.height
-- Look into the `position` string to find the relevants sides to crop from
-- the workarea
local struts = { left = 0, right = 0, bottom = 0, top = 0 }
if vertical then
for _, v in ipairs {"right", "left"} do
if (not position) or position:match(v) then
struts[v] = geo.width
end
end
else
for _, v in ipairs {"top", "bottom"} do
if (not position) or position:match(v) then
struts[v] = geo.height
end
end
end
-- Update the workarea
d:struts(struts)
end
--- Pin a drawable to a placement function.
-- Automatically update the position when the size change.
-- All other arguments will be passed to the `position` function (if any)
-- @tparam[opt=client.focus] drawable d A drawable (like `client`, `mouse`
-- or `wibox`)
-- @param position_f A position name (see `align`) or a position function
-- @tparam[opt={}] table args Other arguments
local function attach(d, position_f, args)
args = args or {}
if not args.attach then return end
d = d or capi.client.focus
if not d then return end
if type(position_f) == "string" then
position_f = placement[position_f]
end
if not position_f then return end
local function tracker()
position_f(d, args)
end
d:connect_signal("property::width" , tracker)
d:connect_signal("property::height", tracker)
tracker()
if args.update_workarea then
local function tracker_struts()
--TODO this is too fragile and doesn't work with all methods.
wibox_update_strut(d, reverse_align_map[position_f])
end
d:connect_signal("property::geometry" , tracker_struts)
d:connect_signal("property::visible" , tracker_struts)
tracker_struts()
end
-- If there is a parent drawable, screen or mouse, also track it
local parent = args.parent or d.screen
if parent then
args.parent:connect_signal("property::geometry" , tracker)
end
end
--- Check if an area intersect another area.
-- @param a The area.
-- @param b The other area.
-- @return True if they intersect, false otherwise.
local function area_intersect_area(a, b)
return (b.x < a.x + a.width
and b.x + b.width > a.x
and b.y < a.y + a.height
and b.y + b.height > a.y)
end
--- Get the intersect area between a and b.
-- @param a The area.
-- @param b The other area.
-- @return The intersect area.
local function area_intersect_area_get(a, b)
local g = {}
g.x = math.max(a.x, b.x)
g.y = math.max(a.y, b.y)
g.width = math.min(a.x + a.width, b.x + b.width) - g.x
g.height = math.min(a.y + a.height, b.y + b.height) - g.y
return g
end
--- Remove an area from a list, splitting the space between several area that
-- can overlap.
-- @param areas Table of areas.
-- @param elem Area to remove.
-- @return The new area list.
local function area_remove(areas, elem)
for i = #areas, 1, -1 do
-- Check if the 'elem' intersect
if area_intersect_area(areas[i], elem) then
-- It does? remove it
local r = table.remove(areas, i)
local inter = area_intersect_area_get(r, elem)
if inter.x > r.x then
table.insert(areas, {
x = r.x,
y = r.y,
width = inter.x - r.x,
height = r.height
})
end
if inter.y > r.y then
table.insert(areas, {
x = r.x,
y = r.y,
width = r.width,
height = inter.y - r.y
})
end
if inter.x + inter.width < r.x + r.width then
table.insert(areas, {
x = inter.x + inter.width,
y = r.y,
width = (r.x + r.width) - (inter.x + inter.width),
height = r.height
})
end
if inter.y + inter.height < r.y + r.height then
table.insert(areas, {
x = r.x,
y = inter.y + inter.height,
width = r.width,
height = (r.y + r.height) - (inter.y + inter.height)
})
end
end
end
return areas
end
-- Convert 2 points into a rectangle
local function rect_from_points(p1x, p1y, p2x, p2y)
return {
x = p1x,
y = p1y,
width = p2x - p1x,
height = p2y - p1y,
}
end
-- Convert a rectangle and matrix info into a point
local function rect_to_point(rect, corner_i, corner_j)
return {
x = rect.x + corner_i * math.floor(rect.width ),
y = rect.y + corner_j * math.floor(rect.height),
}
end
--- Move a drawable to the closest corner of the parent geometry (such as the
-- screen).
--
-- Valid arguments include the common ones and:
--
-- * **include_sides**: Also include the left, right, top and bottom positions
--
--@DOC_awful_placement_closest_mouse_EXAMPLE@
-- @tparam[opt=client.focus] drawable d A drawable (like `client`, `mouse`
-- or `wibox`)
-- @tparam[opt={}] table args The arguments
-- @treturn table The new geometry
-- @treturn string The corner name
function placement.closest_corner(d, args)
args = add_context(args, "closest_corner")
d = d or capi.client.focus
local sgeo = get_parent_geometry(d, args)
local dgeo = geometry_common(d, args)
local pos = move_into_geometry(sgeo, dgeo)
local corner_i, corner_j, n
-- Use the product of 3 to get the closest point in a NxN matrix
local function f(_n, mat)
n = _n
-- The +1 is required to avoid a rounding error when
-- pos.x == sgeo.x+sgeo.width
corner_i = -math.ceil( ( (sgeo.x - pos.x) * n) / (sgeo.width + 1))
corner_j = -math.ceil( ( (sgeo.y - pos.y) * n) / (sgeo.height + 1))
return mat[corner_j + 1][corner_i + 1]
end
-- Turn the area into a grid and snap to the cloest point. This size of the
-- grid will increase the accuracy. A 2x2 matrix only include the corners,
-- at 3x3, this include the sides too technically, a random size would work,
-- but without corner names.
local grid_size = args.include_sides and 3 or 2
-- If the point is in the center, use the closest corner
local corner = grid_size == 3 and f(3, corners3x3) or f(2, corners2x2)
-- Transpose the corner back to the original size
local new_args = setmetatable({position = corner}, {__index=args})
local ngeo = placement_private.align(d, new_args)
return ngeo, corner
end
--- Place the client so no part of it will be outside the screen (workarea).
--@DOC_awful_placement_no_offscreen_EXAMPLE@
-- @client c The client.
-- @tparam[opt=client's screen] integer screen The screen.
-- @treturn table The new client geometry.
function placement.no_offscreen(c, screen)
--HACK necessary for composition to work. The API will be changed soon
if type(screen) == "table" then
screen = nil
end
c = c or capi.client.focus
local geometry = area_common(c)
screen = get_screen(screen or c.screen or a_screen.getbycoord(geometry.x, geometry.y))
local screen_geometry = screen.workarea
if geometry.x + geometry.width > screen_geometry.x + screen_geometry.width then
geometry.x = screen_geometry.x + screen_geometry.width - geometry.width
end
if geometry.x < screen_geometry.x then
geometry.x = screen_geometry.x
end
if geometry.y + geometry.height > screen_geometry.y + screen_geometry.height then
geometry.y = screen_geometry.y + screen_geometry.height - geometry.height
end
if geometry.y < screen_geometry.y then
geometry.y = screen_geometry.y
end
return c:geometry {
x = geometry.x,
y = geometry.y
}
end
--- Place the client where there's place available with minimum overlap.
--@DOC_awful_placement_no_overlap_EXAMPLE@
-- @param c The client.
-- @treturn table The new geometry
function placement.no_overlap(c)
c = c or capi.client.focus
local geometry = area_common(c)
local screen = get_screen(c.screen or a_screen.getbycoord(geometry.x, geometry.y))
local cls = client.visible(screen)
local curlay = layout.get()
local areas = { screen.workarea }
for _, cl in pairs(cls) do
if cl ~= c and cl.type ~= "desktop" and (cl.floating or curlay == layout.suit.floating) then
areas = area_remove(areas, area_common(cl))
end
end
-- Look for available space
local found = false
local new = { x = geometry.x, y = geometry.y, width = 0, height = 0 }
for _, r in ipairs(areas) do
if r.width >= geometry.width
and r.height >= geometry.height
and r.width * r.height > new.width * new.height then
found = true
new = r
-- Check if the client's current position is available
-- and prefer that one (why move it around pointlessly?)
if geometry.x >= r.x
and geometry.y >= r.y
and geometry.x + geometry.width <= r.x + r.width
and geometry.y + geometry.height <= r.y + r.height then
new.x = geometry.x
new.y = geometry.y
end
end
end
-- We did not find an area with enough space for our size:
-- just take the biggest available one and go in.
-- This makes sure to have the whole screen's area in case it has been
-- removed.
if not found then
if #areas == 0 then
areas = { screen.workarea }
end
for _, r in ipairs(areas) do
if r.width * r.height > new.width * new.height then
new = r
end
end
end
-- Restore height and width
new.width = geometry.width
new.height = geometry.height
return c:geometry({ x = new.x, y = new.y })
end
--- Place the client under the mouse.
--@DOC_awful_placement_under_mouse_EXAMPLE@
-- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`)
-- @tparam[opt={}] table args Other arguments
-- @treturn table The new geometry
function placement.under_mouse(d, args)
args = add_context(args, "under_mouse")
d = d or capi.client.focus
local m_coords = capi.mouse.coords()
local ngeo = geometry_common(d, args)
ngeo.x = m_coords.x - ngeo.width / 2
ngeo.y = m_coords.y - ngeo.height / 2
local bw = d.border_width or 0
ngeo.width = ngeo.width - 2*bw
ngeo.height = ngeo.height - 2*bw
return ngeo
end
--- Place the client next to the mouse.
--
-- It will place `c` next to the mouse pointer, trying the following positions
-- in this order: right, left, above and below.
--@DOC_awful_placement_next_to_mouse_EXAMPLE@
-- @client[opt=focused] c The client.
-- @tparam[opt=apply_dpi(5)] integer offset The offset from the mouse position.
-- @treturn table The new geometry
function placement.next_to_mouse(c, offset)
c = c or capi.client.focus
offset = offset or dpi(5)
local c_geometry = area_common(c)
local c_width = c_geometry.width
local c_height = c_geometry.height
local m_coords = capi.mouse.coords()
local screen_geometry = capi.screen[capi.mouse.screen].workarea
local x, y
-- Prefer it to be on the right.
x = m_coords.x + offset
if x + c_width > screen_geometry.width then
-- Then to the left.
x = m_coords.x - c_width - offset
end
if x < screen_geometry.x then
-- Then above.
x = m_coords.x - math.ceil(c_width / 2)
y = m_coords.y - c_height - offset
if y < screen_geometry.y then
-- Finally below.
y = m_coords.y + offset
end
else
y = m_coords.y - math.ceil(c_height / 2)
end
return c:geometry({ x = x, y = y })
end
--- Resize the drawable to the cursor.
--
-- Valid args:
--
-- * *axis*: The axis (vertical or horizontal). If none is
-- specified, then the drawable will be resized on both axis.
--
--@DOC_awful_placement_resize_to_mouse_EXAMPLE@
-- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`)
-- @tparam[opt={}] table args Other arguments
-- @treturn table The new geometry
function placement.resize_to_mouse(d, args)
d = d or capi.client.focus
args = add_context(args, "resize_to_mouse")
local coords = capi.mouse.coords()
local ngeo = geometry_common(d, args)
local h_only = args.axis == "horizontal"
local v_only = args.axis == "vertical"
-- To support both growing and shrinking the drawable, it is necessary
-- to decide to use either "north or south" and "east or west" directions.
-- Otherwise, the result will always be 1x1
local _, closest_corner = placement.closest_corner(capi.mouse, {
parent = d,
pretend = true,
include_sides = args.include_sides or false,
})
-- Given "include_sides" wasn't set, it will always return a name
-- with the 2 axis. If only one axis is needed, adjust the result
if h_only then
closest_corner = closest_corner:match("left") or closest_corner:match("right")
elseif v_only then
closest_corner = closest_corner:match("top") or closest_corner:match("bottom")
end
-- Use p0 (mouse), p1 and p2 to create a rectangle
local pts = resize_to_point_map[closest_corner]
local p1 = pts.p1 and rect_to_point(ngeo, pts.p1[1], pts.p1[2]) or coords
local p2 = pts.p2 and rect_to_point(ngeo, pts.p2[1], pts.p2[2]) or coords
-- Create top_left and bottom_right points, convert to rectangle
ngeo = rect_from_points(
pts.y_only and ngeo.x or math.min(p1.x, p2.x),
pts.x_only and ngeo.y or math.min(p1.y, p2.y),
pts.y_only and ngeo.x + ngeo.width or math.max(p2.x, p1.x),
pts.x_only and ngeo.y + ngeo.height or math.max(p2.y, p1.y)
)
local bw = d.border_width or 0
for _, a in ipairs {"width", "height"} do
ngeo[a] = ngeo[a] - 2*bw
end
-- Now, correct the geometry by the given size_hints offset
if d.apply_size_hints then
local w, h = d:apply_size_hints(
ngeo.width,
ngeo.height
)
local offset = align_map[pts.align](w, h, ngeo.width, ngeo.height)
ngeo.x = ngeo.x - offset.x
ngeo.y = ngeo.y - offset.y
end
geometry_common(d, args, ngeo)
return ngeo
end
--- Move the drawable (client or wibox) `d` to a screen position or side.
--
-- Supported args.positions are:
--
-- * top_left
-- * top_right
-- * bottom_left
-- * bottom_right
-- * left
-- * right
-- * top
-- * bottom
-- * centered
-- * center_vertical
-- * center_horizontal
--
--@DOC_awful_placement_align_EXAMPLE@
-- @tparam drawable d A drawable (like `client`, `mouse` or `wibox`)
-- @tparam[opt={}] table args Other arguments
-- @treturn table The new geometry
function placement.align(d, args)
args = add_context(args, "align")
d = d or capi.client.focus
if not d or not args.position then return end
local sgeo = get_parent_geometry(d, args)
local dgeo = geometry_common(d, args)
local bw = d.border_width or 0
local pos = align_map[args.position](
sgeo.width ,
sgeo.height,
dgeo.width ,
dgeo.height
)
local ngeo = {
x = (pos.x and math.ceil(sgeo.x + pos.x) or dgeo.x) ,
y = (pos.y and math.ceil(sgeo.y + pos.y) or dgeo.y) ,
width = math.ceil(dgeo.width ) - 2*bw,
height = math.ceil(dgeo.height ) - 2*bw,
}
geometry_common(d, args, ngeo)
attach(d, placement[args.position], args)
return ngeo
end
-- Add the alias functions
for k in pairs(align_map) do
placement[k] = function(d, args)
args = add_context(args, k)
args.position = k
return placement_private.align(d, args)
end
reverse_align_map[placement[k]] = k
end
-- Add the documentation for align alias
---@DOC_awful_placement_top_left_EXAMPLE@
---@DOC_awful_placement_top_right_EXAMPLE@
---@DOC_awful_placement_bottom_left_EXAMPLE@
---@DOC_awful_placement_bottom_right_EXAMPLE@
---@DOC_awful_placement_left_EXAMPLE@
---@DOC_awful_placement_right_EXAMPLE@
---@DOC_awful_placement_top_EXAMPLE@
---@DOC_awful_placement_bottom_EXAMPLE@
---@DOC_awful_placement_centered_EXAMPLE@
---@DOC_awful_placement_center_vertical_EXAMPLE@
---@DOC_awful_placement_center_horizontal_EXAMPLE@
--- Stretch a drawable in a specific direction.
-- Valid args:
--
-- * **direction**: The stretch direction (*left*, *right*, *up*, *down*) or
-- a table with multiple directions.
--
--@DOC_awful_placement_stretch_EXAMPLE@
-- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`)
-- @tparam[opt={}] table args The arguments
-- @treturn table The new geometry
function placement.stretch(d, args)
args = add_context(args, "stretch")
d = d or capi.client.focus
if not d or not args.direction then return end
-- In case there is multiple directions, call `stretch` for each of them
if type(args.direction) == "table" then
for _, dir in ipairs(args.direction) do
args.direction = dir
placement_private.stretch(dir, args)
end
return
end
local sgeo = get_parent_geometry(d, args)
local dgeo = geometry_common(d, args)
local ngeo = geometry_common(d, args, nil, true)
local bw = d.border_width or 0
if args.direction == "left" then
ngeo.x = sgeo.x
ngeo.width = dgeo.width + (dgeo.x - ngeo.x)
elseif args.direction == "right" then
ngeo.width = sgeo.width - ngeo.x - 2*bw
elseif args.direction == "up" then
ngeo.y = sgeo.y
ngeo.height = dgeo.height + (dgeo.y - ngeo.y)
elseif args.direction == "down" then
ngeo.height = sgeo.height - dgeo.y - 2*bw
else
assert(false)
end
-- Avoid negative sizes if args.parent isn't compatible
ngeo.width = math.max(args.minimim_width or 1, ngeo.width )
ngeo.height = math.max(args.minimim_height or 1, ngeo.height)
geometry_common(d, args, ngeo)
attach(d, placement["stretch_"..args.direction], args)
return ngeo
end
-- Add the alias functions
for _,v in ipairs {"left", "right", "up", "down"} do
placement["stretch_"..v] = function(d, args)
args = add_context(args, "stretch_"..v)
args.direction = v
return placement_private.stretch(d, args)
end
end
---@DOC_awful_placement_stretch_left_EXAMPLE@
---@DOC_awful_placement_stretch_right_EXAMPLE@
---@DOC_awful_placement_stretch_up_EXAMPLE@
---@DOC_awful_placement_stretch_down_EXAMPLE@
--- Maximize a drawable horizontally, vertically or both.
-- Valid args:
--
-- * *axis*:The axis (vertical or horizontal). If none is
-- specified, then the drawable will be maximized on both axis.
--
--@DOC_awful_placement_maximize_EXAMPLE@
-- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`)
-- @tparam[opt={}] table args The arguments
-- @treturn table The new geometry
function placement.maximize(d, args)
args = add_context(args, "maximize")
d = d or capi.client.focus
if not d then return end
local sgeo = get_parent_geometry(d, args)
local ngeo = geometry_common(d, args, nil, true)
local bw = d.border_width or 0
if (not args.axis) or args.axis :match "vertical" then
ngeo.y = sgeo.y
ngeo.height = sgeo.height - 2*bw
end
if (not args.axis) or args.axis :match "horizontal" then
ngeo.x = sgeo.x
ngeo.width = sgeo.width - 2*bw
end
geometry_common(d, args, ngeo)
attach(d, placement.maximize, args)
return ngeo
end
-- Add the alias functions
for _, v in ipairs {"vertically", "horizontally"} do
placement["maximize_"..v] = function(d2, args)
args = add_context(args, "maximize_"..v)
args.axis = v
return placement_private.maximize(d2, args)
end
end
--- Scale the drawable by either a relative or absolute percent.
--
-- Valid args:
--
-- **to_percent** : A number between 0 and 1. It represent a percent related to
-- the parent geometry.
-- **by_percent** : A number between 0 and 1. It represent a percent related to
-- the current size.
-- **direction**: Nothing or "left", "right", "up", "down".
--
-- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`)
-- @tparam[opt={}] table args The arguments
-- @treturn table The new geometry
function placement.scale(d, args)
args = add_context(args, "scale_to_percent")
d = d or capi.client.focus
local to_percent = args.to_percent
local by_percent = args.by_percent
local percent = to_percent or by_percent
local direction = args.direction
local sgeo = get_parent_geometry(d, args)
local ngeo = geometry_common(d, args, nil)
local old_area = {width = ngeo.width, height = ngeo.height}
if (not direction) or direction == "left" or direction == "right" then
ngeo.width = (to_percent and sgeo or ngeo).width*percent
if direction == "left" then
ngeo.x = ngeo.x - (ngeo.width - old_area.width)
end
end
if (not direction) or direction == "up" or direction == "down" then
ngeo.height = (to_percent and sgeo or ngeo).height*percent
if direction == "up" then
ngeo.y = ngeo.y - (ngeo.height - old_area.height)
end
end
local bw = d.border_width or 0
ngeo.width = ngeo.width - 2*bw
ngeo.height = ngeo.height - 2*bw
geometry_common(d, args, ngeo)
attach(d, placement.maximize, args)
return ngeo
end
---@DOC_awful_placement_maximize_vertically_EXAMPLE@
---@DOC_awful_placement_maximize_horizontally_EXAMPLE@
--- Restore the geometry.
-- @tparam[opt=client.focus] drawable d A drawable (like `client` or `wibox`)
-- @tparam[opt={}] table args The arguments
-- @treturn boolean If the geometry was restored
function placement.restore(d, args)
if not args or not args.context then return false end
d = d or capi.client.focus
if not data[d] then return false end
local memento = data[d][args.context]
if not memento then return false end
memento.screen = nil --TODO use it
d:geometry(memento)
return true
end
return placement
-- vim: filetype=lua:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:textwidth=80