--------------------------------------------------------------------------- -- @author Uli Schlachter -- @copyright 2010 Uli Schlachter -- @release @AWESOME_VERSION@ -- @module wibox.widget.base --------------------------------------------------------------------------- local debug = require("gears.debug") local object = require("gears.object") local cache = require("gears.cache") local matrix = require("gears.matrix") local Matrix = require("lgi").cairo.Matrix local setmetatable = setmetatable local pairs = pairs local type = type local table = table local base = {} -- {{{ Caches local call_stack = {} -- Indexes are widgets, allow them to be garbage-collected local widget_dependencies = setmetatable({}, { __mode = "k" }) -- Don't do this in unit tests if awesome and awesome.connect_signal then -- Reset the call stack at each refresh. This fixes things up in case there was -- an error in some callback and thus put_cache() wasn't called (if this -- happens, we possibly recorded too many deps, but so what?) awesome.connect_signal("refresh", function() call_stack = {} end) end -- When you call get_cache_and_record_deps(), the widget is recorded in a stack -- until the following put_cache(). All other calls to -- get_cache_and_record_deps() that happen during this will cause a dependency -- between the widgets that are involved to be recorded. This information is -- used by clear_caches() to also clear all caches of dependent widgets. -- Get the caches for a widget and record its dependencies. All following -- cache-uses will record this widgets as a dependency. This returns a function -- that calls the callback of kind `kind` on the widget. local function get_cache_and_record_deps(widget, kind) -- Record dependencies (each entry in the call stack depends on `widget`) local deps = widget_dependencies[widget] or {} for _, w in pairs(call_stack) do deps[w] = true end widget_dependencies[widget] = deps -- Add widget to call stack table.insert(call_stack, widget) -- Create cache if needed if not widget._widget_caches[kind] then widget._widget_caches[kind] = cache.new(function(...) return widget[kind](widget, ...) end) end return widget._widget_caches[kind] end -- Each call to the above function should be followed by a call to this -- function. Everything in-between is recorded as a dependency (it's -- complicated...). local function put_cache(widget) assert(#call_stack ~= 0) if table.remove(call_stack) ~= widget then put_cache(widget) end end -- Clear the caches for `widget` and all widgets that depend on it. local function clear_caches(widget) for w in pairs(widget_dependencies[widget] or {}) do widget_dependencies[w] = {} w._widget_caches = {} end widget_dependencies[widget] = {} widget._widget_caches = {} end -- }}} --- Figure out the geometry in device coordinate space. This gives only tight -- bounds if no rotations by non-multiples of 90° are used. function base.rect_to_device_geometry(cr, x, y, width, height) return matrix.transform_rectangle(cr.matrix, x, y, width, height) end --- Fit a widget for the given available width and height. This calls the -- widget's `:fit` callback and caches the result for later use. Never call -- `:fit` directly, but always through this function! -- @param context The context in which we are fit. -- @param widget The widget to fit (this uses widget:fit(width, height)). -- @param width The available width for the widget -- @param height The available height for the widget -- @return The width and height that the widget wants to use function base.fit_widget(context, widget, width, height) if not widget.visible then return 0, 0 end -- Sanitize the input. This also filters out e.g. NaN. local width = math.max(0, width) local height = math.max(0, height) local w, h = 0, 0 if widget.fit then local cache = get_cache_and_record_deps(widget, "fit") w, h = cache:get(context, width, height) put_cache(widget) else -- If it has no fit method, calculate based on the size of children local children = base.layout_widget(context, widget, width, height) for _, info in ipairs(children or {}) do local x, y, w2, h2 = matrix.transform_rectangle(info._matrix, 0, 0, info._width, info._height) w, h = math.max(w, x + w2), math.max(h, y + h2) end end -- Also sanitize the output. w = math.max(0, math.min(w, width)) h = math.max(0, math.min(h, height)) return w, h end --- Lay out a widget for the given available width and height. This calls the -- widget's `:layout` callback and caches the result for later use. Never call -- `:layout` directly, but always through this function! However, normally there -- shouldn't be any reason why you need to use this function. -- @param context The context in which we are laid out. -- @param widget The widget to layout (this uses widget:layout(context, width, height)). -- @param width The available width for the widget -- @param height The available height for the widget -- @return The result from the widget's `:layout` callback. function base.layout_widget(context, widget, width, height) if not widget.visible then return end -- Sanitize the input. This also filters out e.g. NaN. local width = math.max(0, width) local height = math.max(0, height) if widget.layout then local cache = get_cache_and_record_deps(widget, "layout") local result = cache:get(context, width, height) put_cache(widget) return result end end --- Set/get a widget's buttons. -- This function is available on widgets created by @{make_widget}. function base:buttons(_buttons) if _buttons then self.widget_buttons = _buttons end return self.widget_buttons end -- Handle a button event on a widget. This is used internally and should not be -- called directly. function base.handle_button(event, widget, x, y, button, modifiers, geometry) local function is_any(mod) return #mod == 1 and mod[1] == "Any" end local function tables_equal(a, b) if #a ~= #b then return false end for k, v in pairs(b) do if a[k] ~= v then return false end end return true end -- Find all matching button objects local matches = {} for k, v in pairs(widget.widget_buttons) do local match = true -- Is it the right button? if v.button ~= 0 and v.button ~= button then match = false end -- Are the correct modifiers pressed? if (not is_any(v.modifiers)) and (not tables_equal(v.modifiers, modifiers)) then match = false end if match then table.insert(matches, v) end end -- Emit the signals for k, v in pairs(matches) do v:emit_signal(event,geometry) end end --- Create widget placement information. This should be used for a widget's -- `:layout()` callback. -- @param widget The widget that should be placed. -- @param mat A cairo matrix transforming from the parent widget's coordinate -- system. For example, use cairo.Matrix.create_translate(1, 2) to draw a -- widget at position (1, 2) relative to the parent widget. -- @param width The width of the widget in its own coordinate system. That is, -- after applying the transformation matrix. -- @param height The height of the widget in its own coordinate system. That is, -- after applying the transformation matrix. -- @return An opaque object that can be returned from :layout() function base.place_widget_via_matrix(widget, mat, width, height) return { _widget = widget, _width = width, _height = height, _matrix = matrix.copy(mat) } end --- Create widget placement information. This should be used for a widget's -- `:layout()` callback. -- @param widget The widget that should be placed. -- @param x The x coordinate for the widget. -- @param y The y coordinate for the widget. -- @param width The width of the widget in its own coordinate system. That is, -- after applying the transformation matrix. -- @param height The height of the widget in its own coordinate system. That is, -- after applying the transformation matrix. -- @return An opaque object that can be returned from :layout() function base.place_widget_at(widget, x, y, width, height) return base.place_widget_via_matrix(widget, Matrix.create_translate(x, y), width, height) end --[[-- Create a new widget. All widgets have to be generated via this function so that the needed signals are added and mouse input handling is set up. The returned widget will have a :buttons member function that can be used to register a set of mouse button events with the widget. To implement your own widget, you can implement some member functions on a freshly-created widget. Note that all of these functions should be deterministic in the sense that they will show the same behavior if they are repeatedly called with the same arguments (same width and height). If your widget is updated and needs to change, suitable signals have to be emitted. This will be explained later. The first callback is :fit. This function is called to select the size of your widget. The arguments to this function is the available space and it should return its desired size. Note that this function only provides a hint which is not necessarily followed. The widget must also be able to draw itself at different sizes than the one requested.
function widget:fit(context, width, height)
-- Find the maximum square available
local m = math.min(width, height)
return m, m
end
The next callback is :draw. As the name suggests, this function is called to
draw the widget. The arguments to this widget are the context that the widget is
drawn in, the cairo context on which it should be drawn and the widget's size.
The cairo context is set up in such a way that the widget as its top-left corner
at (0, 0) and its bottom-right corner at (width, height). In other words, no
special transformation needs to be done. Note that during this callback a
suitable clip will already be applied to the cairo context so that this callback
will not be able to draw outside of the area that was registered for the widget
by the layout that placed this widget. You should not call
cr:reset_clip()
, as redraws will not be handled correctly in this
case.
function widget:draw(wibox, cr, width, height)
cr:move_to(0, 0)
cr:line_to(width, height)
cr:move_to(0, height)
cr:line_to(width, 0)
cr:stroke()
end
There are two signals configured for a widget. When the result that :fit would
return changes, the widget::layout_changed
signal has to be
emitted. If this actually causes layout changes, the affected areas will be
redrawn. The other signal is widget::redraw_needed
. This signal
signals that :draw has to be called to redraw the widget, but it is safe to
assume that :fit does still return the same values as before. If in doubt, you
can emit both signals to be safe.
If your widget only needs to draw something to the screen, the above is all that
is needed. The following callbacks can be used when implementing layouts which
place other widgets on the screen.
The :layout callback is used to figure out which other widgets should be drawn
relative to this widget. Note that it is allowed to place widgets outside of the
extents of your own widget, for example at a negative position or at twice the
size of this widget. Use this mechanism if your widget needs to draw outside of
its own extents. If the result of this callback changes,
widget::layout_changed
has to be emitted. You can use @{fit_widget}
to call the `:fit` callback of other widgets. Never call `:fit` directly! For
example, if you want to place another widget child
inside of your
widget, you can do it like this:
-- For readability
local base = wibox.widget.base
function widget:layout(width, height)
local result = {}
table.insert(result, base.place_widget_at(child, width/2, 0, width/2, height)
return result
end
Finally, if you want to influence how children are drawn, there are four
callbacks available that all get similar arguments:
function widget:before_draw_children(context, cr, width, height)
function widget:after_draw_children(context, cr, width, height)
function widget:before_draw_child(context, index, child, cr, width, height)
function widget:after_draw_child(context, index, child, cr, width, height)
All of these are called with the same arguments as the :draw() method. Please
note that a larger clip will be active during these callbacks that also contains
the area of all children. These callbacks can be used to influence the way in
which children are drawn, but they should not cause the drawing to cover a
different area. As an example, these functions can be used to draw children
translucently:
function widget:before_draw_children(wibox, cr, width, height)
cr:push_group()
end
function widget:after_draw_children(wibox, cr, width, height)
cr:pop_group_to_source()
cr:paint_with_alpha(0.5)
end
In pseudo-code, the call sequence for the drawing callbacks during a redraw
looks like this:
widget:draw(wibox, cr, width, height)
widget:before_draw_children(wibox, cr, width, height)
for child do
widget:before_draw_child(wibox, cr, child_index, child, width, height)
cr:save()
-- Draw child and all of its children recursively, taking into account the
-- position and size given to base.place_widget_at() in :layout().
cr:restore()
widget:after_draw_child(wibox, cr, child_index, child, width, height)
end
widget:after_draw_children(wibox, cr, width, height)
@param proxy If this is set, the returned widget will be a proxy for this
widget. It will be equivalent to this widget. This means it
looks the same on the screen.
@tparam[opt] string widget_name Name of the widget. If not set, it will be
set automatically via `gears.object.modulename`.
@see fit_widget
--]]--
function base.make_widget(proxy, widget_name)
local ret = object()
-- This signal is used by layouts to find out when they have to update.
ret:add_signal("widget::layout_changed")
ret:add_signal("widget::redraw_needed")
-- Mouse input, oh noes!
ret:add_signal("button::press")
ret:add_signal("button::release")
ret:add_signal("mouse::enter")
ret:add_signal("mouse::leave")
-- Backwards compatibility
-- TODO: Remove this
ret:add_signal("widget::updated")
ret:connect_signal("widget::updated", function()
ret:emit_signal("widget::layout_changed")
ret:emit_signal("widget::redraw_needed")
end)
-- No buttons yet
ret.widget_buttons = {}
ret.buttons = base.buttons
-- Make buttons work
ret:connect_signal("button::press", function(...)
return base.handle_button("press", ...)
end)
ret:connect_signal("button::release", function(...)
return base.handle_button("release", ...)
end)
if proxy then
ret.fit = function(_, context, width, height)
return base.fit_widget(context, proxy, width, height)
end
ret.layout = function(_, context, width, height)
return { base.place_widget_at(proxy, 0, 0, width, height) }
end
proxy:connect_signal("widget::layout_changed", function()
ret:emit_signal("widget::layout_changed")
end)
proxy:connect_signal("widget::redraw_needed", function()
ret:emit_signal("widget::redraw_needed")
end)
end
-- Set up caches
clear_caches(ret)
ret:connect_signal("widget::layout_changed", function()
clear_caches(ret)
end)
-- Add visible property and setter.
ret.visible = true
function ret:set_visible(b)
if b ~= self.visible then
self.visible = b
self:emit_signal("widget::layout_changed")
-- In case something ignored fit and drew the widget anyway
self:emit_signal("widget::redraw_needed")
end
end
-- Add opacity property and setter.
ret.opacity = 1
function ret:set_opacity(b)
if b ~= self.opacity then
self.opacity = b
self:emit_signal("widget::redraw")
end
end
-- Add __tostring method to metatable.
ret.widget_name = widget_name or object.modulename(3)
local mt = {}
local orig_string = tostring(ret)
mt.__tostring = function(o)
return string.format("%s (%s)", ret.widget_name, orig_string)
end
return setmetatable(ret, mt)
end
--- Generate an empty widget which takes no space and displays nothing
function base.empty_widget()
return base.make_widget()
end
--- Do some sanity checking on widget. This function raises a lua error if
-- widget is not a valid widget.
function base.check_widget(widget)
debug.assert(type(widget) == "table")
for k, func in pairs({ "add_signal", "connect_signal", "disconnect_signal" }) do
debug.assert(type(widget[func]) == "function", func .. " is not a function")
end
end
return base
-- vim: filetype=lua:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:textwidth=80