awesome/lib/gears/shape.lua

952 lines
30 KiB
Lua

---------------------------------------------------------------------------
--- Module dedicated to gather common shape painters.
--
-- It adds the concept of "shape" to Awesome. A shape can be applied to a
-- background, a margin, a mask or a drawable shape bounding.
--
-- The functions exposed by this module always take a cairo context as first
-- parameter followed by a width and height. Individual functions may take
-- additional parameters for their specific implementions.
--
-- The functions provided by this module only create a path in the content.
-- to actually draw the content, use `cr:fill()`, `cr:mask()`, `cr:clip()` or
-- `cr:stroke()`
--
-- In many case, it is necessary to apply the shape using a transformation
-- such as a rotation. The preferred way to do this is to wrap the function
-- in another function calling `cr:rotate()` (or any other transformation
-- matrix).
--
-- To specialize a shape where the API doesn't allows extra arguments to be
-- passed, it is possible to wrap the shape function like:
--
-- local new_shape = function(cr, width, height)
-- gears.shape.rounded_rect(cr, width, height, 2)
-- end
--
-- Many elements can be shaped. This include:
--
-- * `client`s (see `gears.surface.apply_shape_bounding`)
-- * `wibox`es (see `wibox.shape`)
-- * All widgets (see `wibox.container.background`)
-- * The progressbar (see `wibox.widget.progressbar.bar_shape`)
-- * The graph (see `wibox.widget.graph.step_shape`)
-- * The checkboxes (see `wibox.widget.checkbox.check_shape`)
-- * Images (see `wibox.widget.imagebox.clip_shape`)
-- * The taglist tags (see `awful.widget.taglist`)
-- * The tasklist clients (see `awful.widget.tasklist`)
-- * The tooltips (see `awful.tooltip`)
--
-- @author Emmanuel Lepage Vallee
-- @copyright 2011-2016 Emmanuel Lepage Vallee
-- @themelib gears.shape
---------------------------------------------------------------------------
local g_matrix = require( "gears.matrix" )
local g_math = require( "gears.math" )
local unpack = unpack or table.unpack -- luacheck: globals unpack (compatibility with Lua 5.1)
local atan2 = math.atan2 or math.atan -- lua 5.3 compat
local min = math.min
local max = math.max
local cos = math.cos
local sin = math.sin
local abs = math.abs
local pow = math.pow -- luacheck: globals math.pow
if not pow then
-- math.pow can be disabled in Lua 5.3 via LUA_COMPAT_MATHLIB
pow = function(x, y)
return x^y
end
end
local module = {}
--- Add a squircle shape with only some of the corner are "circled" to the current path.
-- The squircle is not exactly as the definition.
-- It will expand to the shape's width and height, kinda like an ellipse
--
-- @DOC_gears_shape_partial_squircle_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam boolean tl If the top left corner is rounded
-- @tparam boolean tr If the top right corner is rounded
-- @tparam boolean br If the bottom right corner is rounded
-- @tparam boolean bl If the bottom left corner is rounded
-- @tparam number rate The "squareness" of the squircle, should be greater than 1
-- @tparam number delta The "smoothness" of the shape, delta must be greate
-- than 0.01 and will be reset to 0.01 if not
-- @noreturn
-- @staticfct gears.shape.partial_squircle
function module.partial_squircle(cr, width, height, tl, tr, br, bl, rate, delta)
-- rate ~ 2 can be used by icon
-- this shape doesn't really fit clients
-- but you can still use with rate ~ 32
rate = rate or 2
-- smaller the delta the smoother the shape
-- but probably more laggy
-- so we'll limit delta to the miminum of 0.01
-- so people don't burn their computer
delta = delta or 1 / max(width, height)
delta = delta > 0.01 and delta or 0.01
-- just ellipse things
local a = width / 2
local b = height / 2
local phi = 0
-- move to origin
-- the shape goes counter clock wise
-- start from (w h / 2)
cr:save()
cr:translate(a, b)
cr:move_to(a, 0)
-- draw the corner if that corner is rounded
local curved_corner = function()
local end_angle = phi + math.pi / 2
while phi < end_angle do
local cosphi = cos(phi)
local sinphi = sin(phi)
local x = a * pow(abs(cosphi), 1 / rate) * g_math.sign(cosphi)
local y = b * pow(abs(sinphi), 1 / rate) * g_math.sign(sinphi)
-- so weird, y axis is inverted
cr:line_to(x, -y)
phi = phi + delta
end
end
-- draw with polar cord
-- draw top right
if tr then
curved_corner()
else
cr:move_to(a, 0)
cr:line_to(a, -b)
cr:line_to(0, -b)
phi = math.pi * 0.5
end
-- draw top left
if tl then
curved_corner()
else
cr:line_to(-a, -b)
cr:line_to(-a, 0)
phi = math.pi
end
if bl then
curved_corner()
else
cr:line_to(-a, b)
cr:line_to( 0, b)
phi = math.pi * 1.5
end
-- bottom right
if br then
curved_corner()
else
cr:line_to(a, b)
cr:line_to(a, 0)
phi = math.pi * 2
end
-- it's time to stop
cr:close_path()
-- restore cairo context
cr:restore()
end
--- Add a squircle shape to the current path.
-- This will behave the same as `partial_squircle`
--
-- @DOC_gears_shape_squircle_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam number rate The "squareness" of the squircle, should be greater than 1
-- @tparam number delta The "smoothness" of the shape, delta must be greater
-- than 0.01 and will be reset to 0.01 if not
-- @noreturn
-- @staticfct gears.shape.squircle
function module.squircle(cr, width, height, rate, delta)
module.partial_squircle(cr, width, height, true, true, true, true, rate, delta)
end
--- Add a star shape to the current path.
-- The star size will be the minimum of the given width and weight
--
-- @DOC_gears_shape_star_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The width constraint
-- @tparam number height The height constraint
-- @tparam number n Number of grams (default n = 5 -> pentagram)
-- @noreturn
-- @staticfct gears.shape.star
function module.star(cr, width, height, n)
-- use the minimum as size
local s = min(width, height) / 2
-- draw pentagram by default
n = n or 5
local a = 2 * math.pi / n
-- place the star at the center
cr:save()
cr:translate(width/2, height/2)
cr:rotate(-math.pi/2)
for i = 0,(n - 1) do
cr:line_to(s * cos((i ) * a), s * sin((i ) * a))
cr:line_to(s/2 * cos((i + 0.5) * a), s/2 * sin((i + 0.5) * a))
end
-- restore the context
cr:restore()
cr:close_path()
end
--- Add a rounded rectangle to the current path.
-- Note: If the radius is bigger than either half side, it will be reduced.
--
-- @DOC_gears_shape_rounded_rect_EXAMPLE@
--
-- @param cr A cairo content
-- @tparam number width The rectangle width
-- @tparam number height The rectangle height
-- @tparam number radius The corner radius
-- @noreturn
-- @staticfct gears.shape.rounded_rect
function module.rounded_rect(cr, width, height, radius)
radius = radius or 10
if width / 2 < radius then
radius = width / 2
end
if height / 2 < radius then
radius = height / 2
end
cr:move_to(0, radius)
cr:arc( radius , radius , radius, math.pi , 3*(math.pi/2) )
cr:arc( width-radius, radius , radius, 3*(math.pi/2), math.pi*2 )
cr:arc( width-radius, height-radius, radius, math.pi*2 , math.pi/2 )
cr:arc( radius , height-radius, radius, math.pi/2 , math.pi )
cr:close_path()
end
--- Add a rectangle delimited by 2 180 degree arcs to the path.
--
-- @DOC_gears_shape_rounded_bar_EXAMPLE@
--
-- @param cr A cairo content
-- @param width The rectangle width
-- @param height The rectangle height.
-- @noreturn
-- @staticfct gears.shape.rounded_bar
function module.rounded_bar(cr, width, height)
module.rounded_rect(cr, width, height, height / 2)
end
--- A rounded rect with only some of the corners rounded.
--
-- @DOC_gears_shape_partially_rounded_rect_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam boolean tl If the top left corner is rounded
-- @tparam boolean tr If the top right corner is rounded
-- @tparam boolean br If the bottom right corner is rounded
-- @tparam boolean bl If the bottom left corner is rounded
-- @tparam number rad The corner radius
-- @noreturn
-- @staticfct gears.shape.partially_rounded_rect
function module.partially_rounded_rect(cr, width, height, tl, tr, br, bl, rad)
rad = rad or 10
if width / 2 < rad then
rad = width / 2
end
if height / 2 < rad then
rad = height / 2
end
-- In case there is already some other path on the cairo context:
-- Make sure the close_path() below goes to the right position.
cr:new_sub_path()
-- Top left
if tl then
cr:arc( rad, rad, rad, math.pi, 3*(math.pi/2))
else
cr:move_to(0,0)
end
-- Top right
if tr then
cr:arc( width-rad, rad, rad, 3*(math.pi/2), math.pi*2)
else
cr:line_to(width, 0)
end
-- Bottom right
if br then
cr:arc( width-rad, height-rad, rad, math.pi*2 , math.pi/2)
else
cr:line_to(width, height)
end
-- Bottom left
if bl then
cr:arc( rad, height-rad, rad, math.pi/2, math.pi)
else
cr:line_to(0, height)
end
cr:close_path()
end
--- A rounded rectangle with a triangle at the top.
--
-- @DOC_gears_shape_infobubble_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=5] number corner_radius The corner radius
-- @tparam[opt=10] number arrow_size The width and height of the arrow
-- @tparam[opt=width/2 - arrow_size/2] number arrow_position The position of the arrow
-- @noreturn
-- @staticfct gears.shape.infobubble
function module.infobubble(cr, width, height, corner_radius, arrow_size, arrow_position)
arrow_size = arrow_size or 10
corner_radius = math.min((height-arrow_size)/2, corner_radius or 5)
arrow_position = arrow_position or width/2 - arrow_size/2
cr:move_to(0 ,corner_radius+arrow_size)
-- Top left corner
cr:arc(corner_radius, corner_radius+arrow_size, (corner_radius), math.pi, 3*(math.pi/2))
-- The arrow triangle (still at the top)
cr:line_to(arrow_position , arrow_size )
cr:line_to(arrow_position + arrow_size , 0 )
cr:line_to(arrow_position + 2*arrow_size , arrow_size )
-- Complete the rounded rounded rectangle
cr:arc(width-corner_radius, corner_radius+arrow_size , (corner_radius) , 3*(math.pi/2) , math.pi*2 )
cr:arc(width-corner_radius, height-(corner_radius) , (corner_radius) , math.pi*2 , math.pi/2 )
cr:arc(corner_radius , height-(corner_radius) , (corner_radius) , math.pi/2 , math.pi )
-- Close path
cr:close_path()
end
--- A rectangle terminated by an arrow.
--
-- @DOC_gears_shape_rectangular_tag_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=height/2] number arrow_length The length of the arrow part
-- @noreturn
-- @staticfct gears.shape.rectangular_tag
function module.rectangular_tag(cr, width, height, arrow_length)
arrow_length = arrow_length or height/2
if arrow_length > 0 then
cr:move_to(0 , height/2 )
cr:line_to(arrow_length , 0 )
cr:line_to(width , 0 )
cr:line_to(width , height )
cr:line_to(arrow_length , height )
else
cr:move_to(0 , 0 )
cr:line_to(-arrow_length, height/2 )
cr:line_to(0 , height )
cr:line_to(width , height )
cr:line_to(width , 0 )
end
cr:close_path()
end
--- A simple arrow shape.
--
-- @DOC_gears_shape_arrow_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=head_width] number head_width The width of the head (/\) of the arrow
-- @tparam[opt=width /2] number shaft_width The width of the shaft of the arrow
-- @tparam[opt=height/2] number shaft_length The head_length of the shaft (the rest is the head)
-- @noreturn
-- @staticfct gears.shape.arrow
function module.arrow(cr, width, height, head_width, shaft_width, shaft_length)
shaft_length = shaft_length or height / 2
shaft_width = shaft_width or width / 2
head_width = head_width or width
local head_length = height - shaft_length
cr:move_to ( width/2 , 0 )
cr:rel_line_to( head_width/2 , head_length )
cr:rel_line_to( -(head_width-shaft_width)/2 , 0 )
cr:rel_line_to( 0 , shaft_length )
cr:rel_line_to( -shaft_width , 0 )
cr:rel_line_to( 0 , -shaft_length )
cr:rel_line_to( -(head_width-shaft_width)/2 , 0 )
cr:close_path()
end
--- A squeezed hexagon filling the rectangle.
--
-- @DOC_gears_shape_hexagon_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @noreturn
-- @staticfct gears.shape.hexagon
function module.hexagon(cr, width, height)
cr:move_to(height/2,0)
cr:line_to(width-height/2,0)
cr:line_to(width,height/2)
cr:line_to(width-height/2,height)
cr:line_to(height/2,height)
cr:line_to(0,height/2)
cr:line_to(height/2,0)
cr:close_path()
end
--- Double arrow popularized by the vim-powerline module.
--
-- @DOC_gears_shape_powerline_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=height/2] number arrow_depth The width of the arrow part of the shape
-- @noreturn
-- @staticfct gears.shape.powerline
function module.powerline(cr, width, height, arrow_depth)
arrow_depth = arrow_depth or height/2
local offset = 0
-- Avoid going out of the (potential) clip area
if arrow_depth < 0 then
width = width + 2*arrow_depth
offset = -arrow_depth
end
cr:move_to(offset , 0 )
cr:line_to(offset + width - arrow_depth , 0 )
cr:line_to(offset + width , height/2 )
cr:line_to(offset + width - arrow_depth , height )
cr:line_to(offset , height )
cr:line_to(offset + arrow_depth , height/2 )
cr:close_path()
end
--- An isosceles triangle.
--
-- @DOC_gears_shape_isosceles_triangle_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @noreturn
-- @staticfct gears.shape.isosceles_triangle
function module.isosceles_triangle(cr, width, height)
cr:move_to( width/2, 0 )
cr:line_to( width , height )
cr:line_to( 0 , height )
cr:close_path()
end
--- A cross (**+**) symbol.
--
-- @DOC_gears_shape_cross_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=width/3] number thickness The cross section thickness
-- @noreturn
-- @staticfct gears.shape.cross
function module.cross(cr, width, height, thickness)
thickness = thickness or width/3
local xpadding = (width - thickness) / 2
local ypadding = (height - thickness) / 2
cr:move_to(xpadding, 0)
cr:line_to(width - xpadding, 0)
cr:line_to(width - xpadding, ypadding)
cr:line_to(width , ypadding)
cr:line_to(width , height-ypadding)
cr:line_to(width - xpadding, height-ypadding)
cr:line_to(width - xpadding, height )
cr:line_to(xpadding , height )
cr:line_to(xpadding , height-ypadding)
cr:line_to(0 , height-ypadding)
cr:line_to(0 , ypadding )
cr:line_to(xpadding , ypadding )
cr:close_path()
end
--- A similar shape to the `rounded_rect`, but with sharp corners.
--
-- @DOC_gears_shape_octogon_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam number corner_radius
-- @noreturn
-- @staticfct gears.shape.octogon
function module.octogon(cr, width, height, corner_radius)
corner_radius = corner_radius or math.min(10, math.min(width, height)/4)
local offset = math.sqrt( (corner_radius*corner_radius) / 2 )
cr:move_to(offset, 0)
cr:line_to(width-offset, 0)
cr:line_to(width, offset)
cr:line_to(width, height-offset)
cr:line_to(width-offset, height)
cr:line_to(offset, height)
cr:line_to(0, height-offset)
cr:line_to(0, offset)
cr:close_path()
end
--- A circle shape.
--
-- @DOC_gears_shape_circle_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=math.min(width height) / 2)] number radius The radius
-- @noreturn
-- @staticfct gears.shape.circle
function module.circle(cr, width, height, radius)
radius = radius or math.min(width, height) / 2
cr:move_to(width/2+radius, height/2)
cr:arc(width / 2, height / 2, radius, 0, 2*math.pi)
cr:close_path()
end
--- A simple rectangle.
--
-- @DOC_gears_shape_rectangle_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @noreturn
-- @staticfct gears.shape.rectangle
function module.rectangle(cr, width, height)
cr:rectangle(0, 0, width, height)
end
--- A diagonal parallelogram with the bottom left corner at x=0 and top right
-- at x=width.
--
-- @DOC_gears_shape_parallelogram_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=width/3] number base_width The parallelogram base width
-- @noreturn
-- @staticfct gears.shape.parallelogram
function module.parallelogram(cr, width, height, base_width)
base_width = base_width or width/3
cr:move_to(width-base_width, 0 )
cr:line_to(width , 0 )
cr:line_to(base_width , height )
cr:line_to(0 , height )
cr:close_path()
end
--- A losange.
--
-- @DOC_gears_shape_losange_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @noreturn
-- @staticfct gears.shape.losange
function module.losange(cr, width, height)
cr:move_to(width/2 , 0 )
cr:line_to(width , height/2 )
cr:line_to(width/2 , height )
cr:line_to(0 , height/2 )
cr:close_path()
end
--- A pie.
--
-- The pie center is the center of the area.
--
-- @DOC_gears_shape_pie_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=0] number start_angle The start angle (in radian)
-- @tparam[opt=math.pi/2] number end_angle The end angle (in radian)
-- @tparam[opt=math.min(width height)/2] number radius The shape height
-- @noreturn
-- @staticfct gears.shape.pie
function module.pie(cr, width, height, start_angle, end_angle, radius)
radius = radius or math.floor(math.min(width, height)/2)
start_angle, end_angle = start_angle or 0, end_angle or math.pi/2
-- In case there is already some other path on the cairo context:
-- Make sure the close_path() below goes to the right position.
cr:new_sub_path()
-- If the shape is a circle, then avoid the lines
if math.abs(start_angle + end_angle - 2*math.pi) <= 0.01 then
cr:arc(width/2, height/2, radius, 0, 2*math.pi)
else
cr:move_to(width/2, height/2)
cr:line_to(
width/2 + math.cos(start_angle)*radius,
height/2 + math.sin(start_angle)*radius
)
cr:arc(width/2, height/2, radius, start_angle, end_angle)
end
cr:close_path()
end
--- A rounded arc.
--
-- The pie center is the center of the area.
--
-- @DOC_gears_shape_arc_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=math.min(width height)/2] number thickness The arc thickness
-- @tparam[opt=0] number start_angle The start angle (in radian)
-- @tparam[opt=math.pi/2] number end_angle The end angle (in radian)
-- @tparam[opt=false] boolean start_rounded If the arc start rounded
-- @tparam[opt=false] boolean end_rounded If the arc end rounded
-- @noreturn
-- @staticfct gears.shape.arc
function module.arc(cr, width, height, thickness, start_angle, end_angle, start_rounded, end_rounded)
start_angle = start_angle or 0
end_angle = end_angle or math.pi/2
-- In case there is already some other path on the cairo context:
-- Make sure the close_path() below goes to the right position.
cr:new_sub_path()
-- This shape is a partial circle
local radius = math.min(width, height)/2
thickness = thickness or radius/2
local inner_radius = radius - thickness
-- As the edge of the small arc need to touch the [start_p1, start_p2]
-- line, a small subset of the arc circumference has to be substracted
-- that's (less or more) equal to the thickness/2 (a little longer given
-- it is an arc and not a line, but it wont show)
local arc_percent = math.abs(end_angle-start_angle)/(2*math.pi)
local arc_length = ((radius-thickness/2)*2*math.pi)*arc_percent
if start_rounded then
arc_length = arc_length - thickness/2
-- And back to angles
start_angle = end_angle - (arc_length/(radius - thickness/2))
end
if end_rounded then
arc_length = arc_length - thickness/2
-- And back to angles. Also make sure to avoid underflowing when the
-- rounded edge radius is greater than the angle delta.
end_angle = start_angle + math.max(
0, arc_length/(radius - thickness/2)
)
end
-- The path is a curcular arc joining 4 points
-- Outer first corner
local start_p1 = {
width /2 + math.cos(start_angle)*radius,
height/2 + math.sin(start_angle)*radius
}
if start_rounded then
-- Inner first corner
local start_p2 = {
width /2 + math.cos(start_angle)*inner_radius,
height/2 + math.sin(start_angle)*inner_radius
}
local median_angle = atan2(
start_p2[1] - start_p1[1],
-(start_p2[2] - start_p1[2])
)
local arc_center = {
(start_p1[1] + start_p2[1])/2,
(start_p1[2] + start_p2[2])/2,
}
cr:arc(arc_center[1], arc_center[2], thickness/2,
median_angle-math.pi/2, median_angle+math.pi/2
)
else
cr:move_to(unpack(start_p1))
end
cr:arc(width/2, height/2, radius, start_angle, end_angle)
if end_rounded then
-- Outer second corner
local end_p1 = {
width /2 + math.cos(end_angle)*radius,
height/2 + math.sin(end_angle)*radius
}
-- Inner first corner
local end_p2 = {
width /2 + math.cos(end_angle)*inner_radius,
height/2 + math.sin(end_angle)*inner_radius
}
local median_angle = atan2(
end_p2[1] - end_p1[1],
-(end_p2[2] - end_p1[2])
) - math.pi
local arc_center = {
(end_p1[1] + end_p2[1])/2,
(end_p1[2] + end_p2[2])/2,
}
cr:arc(arc_center[1], arc_center[2], thickness/2,
median_angle-math.pi/2, median_angle+math.pi/2
)
end
cr:arc_negative(width/2, height/2, inner_radius, end_angle, start_angle)
cr:close_path()
end
--- Overlap 2 rectangles to emulate a shadow effect.
--
-- This is intended to be used with either the `wibox.container.margin` or
-- the `client.shape` to implement MS-DOS and TWM MenuShadowColor "classic"
-- shadows.
--
-- Warning: If `x_offset` or `y_offset` are greater than the width or height
-- respectively, strange thing will happen.
--
-- @DOC_gears_shape_solid_rectangle_shadow_EXAMPLE@
--
-- @staticfct gears.shape.solid_rectangle_shadow
-- @param cr A cairo context
-- @tparam number width The shape width
-- @tparam number height The shape height
-- @tparam[opt=5] number x_offset The shadow area horizontal offset.
-- @tparam[opt=5] number y_offset The shadow area vertical offset.
function module.solid_rectangle_shadow(cr, w, h, x_offset, y_offset)
x_offset, y_offset = x_offset or 5, y_offset or 5
w, h = w - math.abs(x_offset), h - math.abs(y_offset)
-- Get rid of the corner case first.
if x_offset == 0 and y_offset == 0 then return module.rectangle(cr, w, h) end
-- This leaves 2 possibilities, "hole" at top-left or top-right.
-- Gather the main rectangle geometry.
local rect1 = {x0=0, y0=0, x1=w, y1=h}
local rect2 = {x0=x_offset, y0=y_offset, x1=w + x_offset, y1=h + y_offset}
-- Normalize (shift) to {0, 0} -> {w, h}
if x_offset < 0 then
rect1.x0, rect1.x1 = rect1.x0 - x_offset, rect1.x1 - x_offset
rect2.x0, rect2.x1 = rect2.x0 - x_offset, rect2.x1 - x_offset
end
if y_offset < 0 then
rect1.y0, rect1.y1 = rect1.y0 - y_offset, rect1.y1 - y_offset
rect2.y0, rect2.y1 = rect2.y0 - y_offset, rect2.y1 - y_offset
end
-- Swap the rectangles if needed.
if y_offset < 0 then
rect1, rect2 = rect2, rect1
end
if rect1.x0 > rect2.x0 then
-- cut at top-right
cr:move_to(rect1.x0, rect1.y0)
cr:line_to(rect1.x1, rect1.y0)
cr:line_to(rect1.x1, rect1.y1)
cr:line_to(rect2.x1, rect1.y1)
cr:line_to(rect2.x1, rect2.y1)
cr:line_to(rect2.x0, rect2.y1)
cr:line_to(rect2.x0, rect2.y0)
cr:line_to(rect1.x0, rect2.y0)
cr:close_path()
else
-- cut at top-left
cr:move_to(rect1.x0, rect1.y0)
cr:line_to(rect1.x1, rect1.y0)
cr:line_to(rect1.x1, rect2.y0)
cr:line_to(rect2.x1, rect2.y0)
cr:line_to(rect2.x1, rect2.y1)
cr:line_to(rect2.x0, rect2.y1)
cr:line_to(rect2.x0, rect1.y1)
cr:line_to(rect1.x0, rect1.y1)
cr:close_path()
end
end
--- A partial rounded bar. How much of the rounded bar is visible depends on
-- the given percentage value.
--
-- Note that this shape is not closed and thus filling it doesn't make much
-- sense.
--
-- @DOC_gears_shape_radial_progress_EXAMPLE@
--
-- @param cr A cairo context
-- @tparam number w The shape width
-- @tparam number h The shape height
-- @tparam number percent The progressbar percent
-- @tparam boolean hide_left Do not draw the left side of the shape
-- @noreturn
-- @staticfct gears.shape.radial_progress
function module.radial_progress(cr, w, h, percent, hide_left)
percent = percent or 1
local total_length = (2*(w-h))+2*((h/2)*math.pi)
local bar_percent = (w-h)/total_length
local arc_percent = ((h/2)*math.pi)/total_length
-- Bottom line
if percent > bar_percent then
cr:move_to(h/2,h)
cr:line_to((h/2) + (w-h),h)
cr:stroke()
elseif percent < bar_percent then
cr:move_to(h/2,h)
cr:line_to(h/2+(total_length*percent),h)
cr:stroke()
end
-- Right arc
if percent >= bar_percent+arc_percent then
cr:arc(w-h/2 , h/2, h/2,3*(math.pi/2),math.pi/2)
cr:stroke()
elseif percent > bar_percent and percent < bar_percent+(arc_percent/2) then
cr:arc(w-h/2 , h/2, h/2,(math.pi/2)-((math.pi/2)*((percent-bar_percent)/(arc_percent/2))),math.pi/2)
cr:stroke()
elseif percent >= bar_percent+arc_percent/2 and percent < bar_percent+arc_percent then
cr:arc(w-h/2 , h/2, h/2,0,math.pi/2)
cr:stroke()
local add = (math.pi/2)*((percent-bar_percent-arc_percent/2)/(arc_percent/2))
cr:arc(w-h/2 , h/2, h/2,2*math.pi-add,0)
cr:stroke()
end
-- Top line
if percent > 2*bar_percent+arc_percent then
cr:move_to((h/2) + (w-h),0)
cr:line_to(h/2,0)
cr:stroke()
elseif percent > bar_percent+arc_percent and percent < 2*bar_percent+arc_percent then
cr:move_to((h/2) + (w-h),0)
cr:line_to(((h/2) + (w-h))-total_length*(percent-bar_percent-arc_percent),0)
cr:stroke()
end
-- Left arc
if not hide_left then
if percent > 0.985 then
cr:arc(h/2, h/2, h/2,math.pi/2,3*(math.pi/2))
cr:stroke()
elseif percent > 2*bar_percent+arc_percent then
local relpercent = (percent - 2*bar_percent - arc_percent)/arc_percent
cr:arc(h/2, h/2, h/2,3*(math.pi/2)-(math.pi)*relpercent,3*(math.pi/2))
cr:stroke()
end
end
end
--- Adjust the shape using a transformation object
--
-- Apply various transformations to the shape
--
-- @usage gears.shape.transform(gears.shape.rounded_bar)
-- : rotate(math.pi/2)
-- : translate(10, 10)
--
-- @param shape A shape function
-- @return A transformation handle, also act as a shape function
-- @staticfct gears.shape.transform
-- @see gears.matrix.translate
-- @see gears.matrix.scale
-- @see gears.matrix.rotate
-- @see gears.matrix.rotate_at
-- @see gears.matrix.multiply
-- @see gears.matrix.invert
function module.transform(shape)
-- Apply the transformation matrix and apply the shape, then restore
local function apply(self, cr, width, height, ...)
cr:save()
cr:transform(self.matrix:to_cairo_matrix())
shape(cr, width, height, ...)
cr:restore()
end
-- Redirect function calls like :rotate() to the underlying matrix
local function index(_, key)
return function(self, ...)
self.matrix = self.matrix[key](self.matrix, ...)
return self
end
end
local result = setmetatable({
matrix = g_matrix.identity
}, {
__call = apply,
__index = index
})
return result
end
return module
-- vim: filetype=lua:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:textwidth=80